Revealing the mechanisms of primate face recognition with synthetic stimulus sets optimized to compare computational models
通过优化比较计算模型的合成刺激集揭示灵长类动物面部识别的机制
基本信息
- 批准号:10524626
- 负责人:
- 金额:$ 256.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAnatomyArchitectureAreaArtificial IntelligenceBRAIN initiativeBiologicalBiologyBrainCellsCharacteristicsCodeCollaborationsCommunitiesComputer ModelsComputer Vision SystemsComputing MethodologiesDataData SetDecision MakingDevelopmentFaceFace ProcessingFailureFoundationsFragile X SyndromeFunctional Magnetic Resonance ImagingHumanImageIntelligenceLaboratoriesLeadLifeLinkMacacaMeasurementMental disordersMethodologyMethodsMissionModelingNational Institute of Mental HealthNeural Network SimulationNeurobiologyNeurodevelopmental DisorderNeurologyNeurosciencesOutcomePerceptual DisordersPhysiologicalPopulationPrimatesProblem SolvingProceduresProcessPropertyProsopagnosiaPsychiatryPublic HealthRecurrenceResearchResourcesRoleSamplingShapesSignal TransductionSocial InteractionSocial PerceptionStimulusStreamSystemTechniquesTechnologyTestingTextureTimeTrainingUncertaintyUnited States National Institutes of HealthUpdateWell in selfWilliams SyndromeWorkadjudicateartificial neural networkautism spectrum disordercognitive functiondeep neural networkdevelopmental prosopagnosiadisabilityexperimental studyface perceptionfitnessimprovedinsightmethod developmentneural modelneural network architectureneuromechanismneurophysiologynovelnovel diagnosticsnovel strategiesobject recognitionpredictive modelingrecurrent neural networkrelating to nervous systemresponsesocialsocial deficitssuccesstheories
项目摘要
Project Summary
Neuroscience is entering a new era, where large-scale neural network models can be tested with unprecedent-
edly rich measurements of neural activity. This proposal develops a general methodology for linking theory to
experiment in this new era and applies the methodology to the problem of primate face recognition. Face recogni-
tion is an important problem at the intersection of neuroscience and AI, and provides an ideal domain in which to
tackle the more general problem of object recognition: the problem of face recognition is confined to a particular
stimulus class (faces) and constrained by a known network of face areas in the brain. The project is a collabo-
ration between two laboratories with complementary strengths in computational modeling and neurophysiology
in fMRI-identified face areas, whose shared focus and past work provide a strong foundation to build on. To link
theory to experiment, we will implement computational theories in neural network models and use optimization
techniques to create sets of synthetic face stimuli that elicit strongly divergent predictions from the models. We
refer to such stimuli as controversial stimuli since they are optimized to make models disagree. Controversial
stimuli provide out-of-distribution probes of the models and increase our power to distinguish between alternative
computational hypotheses. We will test feedforward and recurrent computational mechanisms of face recognition
by implementing them in neural network models simultaneously constrained by biology (anatomical connectivity
and neurophysiology) and cognitive function (recognition objective and computational constraints). Aim 1 will
implement computational theories of face recognition in feedforward and recurrent neural network models, so
as to render the theories testable in terms of both their ability to account for successful recognition and their
ability to explain neural population codes in primate face patches. Aim 2 will compare the models by recording
neural responses in face patches elicited by synthetic face stimuli that are optimized for the models to make
contrasting predictions. Aim 3 is to reveal the remaining limitations of the best models for each face patch in
recording experiments where the stimuli are adapted in a closed loop, so as to maximize the empirical prediction
error of the models. The expected outcomes of this work include the identification of the computational mecha-
nisms of primate face recognition, the development of novel computational architectures, and the development
of the method of controversial stimuli as a general experimental methodology for neural recordings that enables
powerful direct tests of computational theories implemented in neural network models. The computational and
methodological insights are expected to contribute to the development of new diagnostic and treatment meth-
ods for face blindness (prosopagnosia) and other perceptual disorders and could lead to new approaches for
decision-making in neurology and psychiatry.
项目摘要
神经科学正在进入一个新的时代,大规模的神经网络模型可以用前所未有的速度进行测试。
丰富的神经活动测量。这一建议提出了一种将理论与
在这个新时代的实验,并应用该方法论的问题,灵长类动物的人脸识别。人脸识别
问题是神经科学和人工智能交叉的一个重要问题,并提供了一个理想的领域,
解决对象识别的更普遍的问题:人脸识别的问题被限制在一个特定的
刺激类别(面部),并受到大脑中面部区域的已知网络的约束。该项目是一个合作-
在计算建模和神经生理学方面具有互补优势的两个实验室之间的比例
在fMRI识别的艾德面部区域,其共同的重点和过去的工作提供了一个坚实的基础上建立。
从理论到实验,我们将在神经网络模型中实现计算理论,并使用优化
技术来创建一组合成的面部刺激,这些刺激引起来自模型的强烈分歧的预测。我们
将这些刺激称为有争议的刺激,因为它们被优化以使模型不一致。争议
刺激提供了模型的分布外探针,并增加了我们区分替代方案的能力
计算假设我们将测试人脸识别的前馈和递归计算机制
通过在同时受到生物学(解剖学连接)约束的神经网络模型中实现它们,
和神经生理学)和认知功能(识别目标和计算约束)。目标1将
在前馈和递归神经网络模型中实现人脸识别的计算理论,
为了使理论在解释成功承认的能力和
能够解释灵长类动物面部斑块中的神经群体代码。目标2将通过记录来比较模型
由合成面部刺激引起的面部斑块中的神经反应,这些面部刺激针对模型进行了优化,
对比预测目标3是揭示剩余的限制,最好的模型,为每个人脸补丁,
记录实验,其中刺激在闭环中适应,以便最大化经验预测
模型的误差。这项工作的预期成果包括识别计算机制,
灵长类动物面部识别的原理、新型计算架构的发展以及
有争议的刺激方法作为神经记录的一般实验方法,
强大的直接测试在神经网络模型中实现的计算理论。计算和
方法学的见解预计将有助于新的诊断和治疗方法的发展,
ods用于脸盲(面孔失认症)和其他知觉障碍,并可能导致新的方法,
神经病学和精神病学的决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Winrich Freiwald其他文献
Winrich Freiwald的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Winrich Freiwald', 18)}}的其他基金
Genetic dissection of cortical projection neurons in social brain circuits
社会脑回路中皮质投射神经元的基因解剖
- 批准号:
10452678 - 财政年份:2021
- 资助金额:
$ 256.81万 - 项目类别:
Genetic dissection of cortical projection neurons in social brain circuits
社会脑回路中皮质投射神经元的基因解剖
- 批准号:
10303553 - 财政年份:2021
- 资助金额:
$ 256.81万 - 项目类别:
Uncovering the Functional Organization and Cell Type Composition of Cortical Face Areas
揭示面部皮质区域的功能组织和细胞类型组成
- 批准号:
10227904 - 财政年份:2020
- 资助金额:
$ 256.81万 - 项目类别:
Defining the Neural Circuits of Attention Control: A New Hypothesis
定义注意力控制的神经回路:一个新假设
- 批准号:
10356859 - 财政年份:2020
- 资助金额:
$ 256.81万 - 项目类别:
Defining the Neural Circuits of Attention Control: A New Hypothesis
定义注意力控制的神经回路:一个新假设
- 批准号:
10576288 - 财政年份:2020
- 资助金额:
$ 256.81万 - 项目类别:
Motor Compositionality in the Control of Facial Movements
控制面部运动的运动组合性
- 批准号:
10599085 - 财政年份:2019
- 资助金额:
$ 256.81万 - 项目类别:
Motor Compositionality in the Control of Facial Movements
控制面部运动的运动组合性
- 批准号:
10374011 - 财政年份:2019
- 资助金额:
$ 256.81万 - 项目类别:
CRCNS: US-Japan Research Proposal: The Computational Principles of a Neural Face Processing System
CRCNS:美日研究提案:神经人脸处理系统的计算原理
- 批准号:
9765324 - 财政年份:2018
- 资助金额:
$ 256.81万 - 项目类别:
CRCNS: US-Japan Research Proposal: The Computational Principles of a Neural Face Processing System
CRCNS:美日研究提案:神经人脸处理系统的计算原理
- 批准号:
10016303 - 财政年份:2018
- 资助金额:
$ 256.81万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 256.81万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 256.81万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 256.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 256.81万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 256.81万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 256.81万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 256.81万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 256.81万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 256.81万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 256.81万 - 项目类别:
Studentship