The role of metal ion homeostasis in regulating bacterial capsule production
金属离子稳态在调节细菌荚膜产生中的作用
基本信息
- 批准号:10360103
- 负责人:
- 金额:$ 40.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-10 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAnabolismAntibiotic TherapyAwardBacteriaBacterial AdhesinsBacterial Antibiotic ResistanceBacterial CapsulesBacterial InfectionsBiochemicalBiogenesisBiologyBiomedical ResearchCalciumCareer ChoiceCell physiologyChemistryChildClinical TreatmentCommunicable DiseasesDangerousnessDataDevelopmentDiseaseDisease ProgressionElderlyEnvironmentEnvironmental Risk FactorEnzymesExhibitsExposure toFoundationsFutureGoalsGrowthHomeostasisHumanIdahoImmuneImpairmentInfectionInterdisciplinary StudyInterventionIonsKnowledgeLaboratoriesLiteratureManganeseMembrane ProteinsMetalsMicrobiological TechniquesMicronutrientsMissionModelingModernizationMolecularMulti-Drug ResistanceNational Institute of Allergy and Infectious DiseaseNutrientOutcomeOxygenPathogenesisPathogenicityPathway interactionsPhysiologicalPlayPolysaccharidesPopulationPositioning AttributeProductionProteinsProteomicsPublic HealthRNAResearchResearch TechnicsRoleSignal TransductionStreptococcus pneumoniaeSurface AntigensTalentsTherapeuticThickTransition ElementsUnited States National Institutes of HealthUniversitiesUp-RegulationVirulenceVirulence FactorsZincantimicrobialarmbasecalcium supplementationcofactorcombatdesigndrug developmenteffective therapyenzyme activityexperiencegraduate studentinnovationinterestnovelnovel therapeuticspathogenpathogenic bacteriapreventprogramsresponsetranscriptome sequencingundergraduate student
项目摘要
Project Summary/Abstract
Capsular polysaccharide (CPS) produced by pathogenic bacteria is a key virulence determinant for
bacterial survival in the human host, but knowledge of how CPS production is regulated remains limited. Given
the need for pathogenic bacteria to modulate CPS expression (thickness) among various host niches during
disease progression, we postulate here that available environmental factors such as metal ion micronutrients
can influence CPS production. The long-term goal is to help develop alternative metal-based antimicrobial
therapeutics for clinical treatment of bacterial diseases in humans. The overall objectives in this application,
which constitute the first step toward attainment of the long-term goal, are to identify the molecular
mechanisms by which cellular metal ion ratios, specifically manganese (Mn), zinc (Zn), and calcium (Ca),
influence CPS production, while increasing exposure of undergraduates to research and enhancing Idaho
State University’s biomedical research enterprise. The central hypothesis is that metal ion micronutrients
regulate CPS biogenesis via direct modulation of enzyme activity in pathogenic bacteria using Streptococcus
pneumoniae (Spn) as a Gram-positive model bacterium. The rationale for this project is that a mechanistic
understanding of how cellular metal ion ratios regulate CPS expression levels would provide new opportunities
for the subsequent identification and development of targets for the design of novel interventions to treat
human pathogenic bacterial infections. To attain the overall objectives, we will pursue the following specific
aims: 1) Identify the mechanism(s) whereby bioavailable Mn/Zn ratios affect CPS production; and 2) Determine
the role of Ca in Mn homeostasis and CPS biogenesis. The first aim will assess the physiological and
biochemical impact of bioavailable Mn/Zn ratios on several Mn-utilizing enzymes involved in various arms of
the Spn CPS biosynthetic pathway. The second aim will assess the impact of Ca/Mn ratios on the intracellular
metal landscape and CPS biosynthesis in coordination with RNAseq and proteomic analysis. The overall
approach combines classical microbiology techniques with modern day applications that span the interface of
biology and chemistry, thereby exposing undergraduates to interdisciplinary research techniques. The
research proposed in this application is innovative, in the applicant’s opinion, because it represents a
substantive departure from the status quo by focusing on the impact of overall cellular metal ion micronutrient
ratios and their capacity to regulate bacterial CPS biogenesis. The research proposed will also further the
understanding of how cellular metal ion availability serve as signaling factors that influence global cellular
changes and cellular programing during pathogenesis. The proposed research is significant because it is
expected to provide a strong foundation for subsequent future design of mechanistic and alternative metal-
based drug development strategies to combat human bacterial pathogens prone to exhibiting multidrug
resistance.
项目总结/摘要
由病原菌产生的荚膜多糖(CPS)是致病菌的关键毒力决定因子,
细菌在人类宿主中的生存,但对CPS产生如何调节的了解仍然有限。给定
病原菌需要在不同宿主小生境中调节CPS表达(厚度),
疾病进展,我们在这里假设,可用的环境因素,如金属离子微量营养素,
会影响CPS的生产长期目标是帮助开发替代金属基抗菌剂
用于临床治疗人类细菌性疾病的治疗剂。本申请的总体目标是,
这是实现长期目标的第一步,
细胞金属离子比率,特别是锰(Mn)、锌(Zn)和钙(Ca),
影响CPS生产,同时增加本科生对研究的接触,提高爱达荷州
州立大学的生物医学研究企业。核心假设是金属离子微量营养素
使用链球菌通过直接调节病原菌中的酶活性来调节CPS生物发生
肺炎链球菌(Spn)作为革兰氏阳性模式细菌。这个项目的基本原理是,
了解细胞金属离子比例如何调节CPS表达水平将提供新的机会
用于随后识别和开发新干预措施的目标,以治疗
人类病原性细菌感染。为达致整体目标,我们会从以下几个方面,
目的:1)确定生物可利用的Mn/Zn比例影响CPS生产的机制; 2)确定
钙在锰稳态和CPS生物合成中的作用。第一个目标将评估生理和
生物可利用的锰/锌比对参与细胞各分支的几种利用锰的酶的生化影响
Spn CPS生物合成途径。第二个目的是评估Ca/Mn比对细胞内钙离子浓度的影响。
金属景观和CPS生物合成与RNAseq和蛋白质组学分析协调。整体
这种方法将经典的微生物学技术与现代应用相结合,
生物学和化学,从而使本科生接触到跨学科的研究技术。的
本申请中提出的研究是创新的,在申请人看来,因为它代表了一个
实质性地脱离现状,侧重于整体细胞金属离子微量营养素的影响
比率和它们调节细菌CPS生物合成的能力。拟议的研究还将进一步促进
了解细胞金属离子的可用性如何作为影响全球细胞的信号因素,
发病过程中的变化和细胞编程。这项研究之所以重要,是因为
预计将为后续的机械和替代金属的未来设计提供坚实的基础-
基于药物开发战略,以打击人类细菌病原体倾向于表现出多药
阻力
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia E. Martin其他文献
Imaging Reversible Mitochondrial Membrane Potential Dynamics with a Small Molecule, Permeable, Internally Redistributing for Inner Membrane Targeting Rhodamine Voltage Reporter
使用小分子、可渗透、内部重新分布的内膜靶向罗丹明电压报告器对可逆线粒体膜电位动态进行成像
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Pavel E Z Klier;Julia E. Martin;Evan W. Miller - 通讯作者:
Evan W. Miller
Correction: The Escherichia coli Small Protein MntS and Exporter MntP Optimize the Intracellular Concentration of Manganese
更正:大肠杆菌小蛋白 MntS 和导出器 MntP 优化细胞内锰浓度
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:4.5
- 作者:
Julia E. Martin;L. Waters;G. Storz;J. Imlay;W. Burkholder;Star Microfluidics - 通讯作者:
Star Microfluidics
Julia E. Martin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 40.85万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 40.85万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 40.85万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 40.85万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 40.85万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 40.85万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 40.85万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 40.85万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 40.85万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 40.85万 - 项目类别:
Discovery Early Career Researcher Award