Scalable Bayesian Network analysis of multimodal FACS and SUMOylation data, with generalization to other big mixed biological datasets
多模式 FACS 和 SUMOylation 数据的可扩展贝叶斯网络分析,并推广到其他大型混合生物数据集
基本信息
- 批准号:10359178
- 负责人:
- 金额:$ 26.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmic AnalysisAlgorithmic SoftwareAlgorithmsAlzheimer&aposs DiseaseBayesian AnalysisBayesian NetworkBeliefBiologicalCellsChromatinCitiesClinicalClinical TrialsComputer softwareDataData AnalysesData SetData Storage and RetrievalDevelopmentEpidemiologyEpigenetic ProcessEvaluationEvolutionFlow CytometryGeneticGenomicsGoalsHybridsImmune signalingImmunogeneticsImmunological ModelsLettersLiteratureMalignant NeoplasmsMethodologyMethodsModelingModernizationOutcomeOutputPathway AnalysisPathway interactionsPhenotypeProcessProteomicsPublic HealthPublicationsResearchResearch PersonnelResearch Project GrantsReverse engineeringSeriesSumoylation PathwaySystems BiologyTestingTransfer RNAVisualizationWorkalgorithm developmentbasebiological researchcancer epidemiologydata handlingexperimental studygenetic epidemiologygenome-widegenome-wide analysisgenomic dataheterogenous dataheuristicshigh dimensionalityinterestinteroperabilitymetabolomicsmultimodalitynetwork modelsnovelparallelizationpublic health relevancereconstructionsimulationsoftware developmenttooltranscriptomicsusabilityuser-friendlyvirtual
项目摘要
Scalable Bayesian Network analysis of multimodal FACS and SUMOylation data, with
generalization to other big mixed biological datasets
Abstract
The Bayesian, or Belief, Network (BN) modeling is a powerful tool that is currently emerging as one of
the principal data analysis, exploration and visualization methods for multimodal (aka mixed, or
heterogeneous) “big” biological data. We have previously developed comprehensive BN algorithms
and software package aimed at heterogeneous big biological data analysis. Over the recent years we
have applied it to the different biological research domains / datasets (including chromatin interaction,
tRNA evolution, genetic epidemiology and metabolomics, cancer epidemiology and single cell
thymopoiesis data); work on three more projects (inferring immune signaling networks using FACS
data, genome-wide SUMOylation, Alzheimer's genomic analysis) is currently in progress. In course of
this work we have identified crucial “bottlenecks” that need to be addressed, on the methodological
level, to make the BN analysis universally usable in our general context (that is, big biological data
containing large numbers of variables of different types). These issues (scalability of the BN
reconstruction process, handling mixed data types, and interpretation, evaluation & comparison of the
resulting network models) have not been adequately addressed in the field yet, thus limiting the
usability of the otherwise very powerful and elegant BN approach.
Consequently, the primary goal of this project is to develop novel BN analysis algorithms with
emphasis on (a) scalability, (b) handling mixed data types, and (c) resulting networks' interpretation
and evaluation. We are particularly interested in the BN analysis of the quantitative flow cytometry
(FACS) data generated as part of the ongoing City of Hope cancer immunogenetics research projects,
as this type of data exemplifies BN modeling challenges, and any advances in algorithm and software
development would be generalizable to most instances of big biological data. We will subsequently
apply the BN analysis to the SUMOylation and chromatin interaction genomic data (also generated as
part of the ongoing collaborative City of Hope research projects), to further test generalizability, and to
produce additional biological results.
多模式FACS和SUMO化数据的可扩展贝叶斯网络分析,
推广到其他大型混合生物数据集
摘要
贝叶斯或信念网络(BN)建模是一种强大的工具,目前正在成为
多模态(又名混合,或
异构)“大”生物数据。我们以前已经开发了全面的BN算法
以及针对异构生物大数据分析的软件包。近年来,我们
已经将其应用于不同的生物研究领域/数据集(包括染色质相互作用,
tRNA进化,遗传流行病学和代谢组学,癌症流行病学和单细胞
胸腺生成数据);另外三个项目的工作(使用流式细胞仪推断免疫信号网络
数据,全基因组SUMO化,阿尔茨海默氏症基因组分析)目前正在进行中。过程中
在这项工作中,我们确定了需要解决的关键“瓶颈”,
水平,使BN分析在我们的一般背景下(即大生物数据)普遍可用
包含大量不同类型的变量)。这些问题(BN的可扩展性
重建过程,处理混合数据类型,以及解释,评估和比较
由此产生的网络模型)尚未在现场得到充分解决,因此限制了
这是一个非常强大和优雅的BN方法的可用性。
因此,本项目的主要目标是开发新的BN分析算法,
重点是(a)可扩展性,(B)处理混合数据类型,以及(c)最终网络的解释
和评价。我们对定量流式细胞术的BN分析特别感兴趣
作为正在进行的City of Hope癌症免疫遗传学研究项目的一部分,
由于这种类型的数据使BN建模面临挑战,
发展将可推广到大生物数据的大多数情况。我们随后将
将BN分析应用于SUMO化和染色质相互作用基因组数据(也作为
正在进行的希望之城合作研究项目的一部分),以进一步测试普遍性,并
产生额外的生物学结果。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Regulation of Enhancers by SUMOylation Through TFAP2C Binding and Recruitment of HDAC Complex to the Chromatin.
通过 TFAP2C 结合和招募 HDAC 复合物到染色质,SUMO 化对增强子进行调节。
- DOI:10.21203/rs.3.rs-4201913/v1
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Abeywardana,Tharindumala;Wu,Xiwei;Huang,Shih-Ting;AldanaMasangkay,Grace;Rodin,AndreiS;Branciamore,Sergio;Gogoshin,Grigoriy;Li,Arthur;Du,Li;Tharuka,Neranjan;Tomaino,Ross;Chen,Yuan
- 通讯作者:Chen,Yuan
Patient generated health data and electronic health record integration in oncologic surgery: A call for artificial intelligence and machine learning.
- DOI:10.1002/jso.26232
- 发表时间:2021-01
- 期刊:
- 影响因子:2.5
- 作者:Melstrom LG;Rodin AS;Rossi LA;Fu P Jr;Fong Y;Sun V
- 通讯作者:Sun V
Graph Neural Networks in Cancer and Oncology Research: Emerging and Future Trends.
- DOI:10.3390/cancers15245858
- 发表时间:2023-12-15
- 期刊:
- 影响因子:5.2
- 作者:Gogoshin, Grigoriy;Rodin, Andrei S.
- 通讯作者:Rodin, Andrei S.
Utilization of model-agnostic explainable artificial intelligence frameworks in oncology: a narrative review.
- DOI:10.21037/tcr-22-1626
- 发表时间:2022-10
- 期刊:
- 影响因子:0.9
- 作者:
- 通讯作者:
Integration of artificial intelligence in lung cancer: Rise of the machine.
肺癌中人工智能的整合:机器的崛起。
- DOI:10.1016/j.xcrm.2023.100933
- 发表时间:2023-02-21
- 期刊:
- 影响因子:0
- 作者:Ladbury C;Amini A;Govindarajan A;Mambetsariev I;Raz DJ;Massarelli E;Williams T;Rodin A;Salgia R
- 通讯作者:Salgia R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrei Rodin其他文献
Andrei Rodin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrei Rodin', 18)}}的其他基金
An integrated toolkit combining computational systems biology techniques with molecular dynamics simulations to delineate functionality of GPCRs
一个集成的工具包,将计算系统生物学技术与分子动力学模拟相结合,以描述 GPCR 的功能
- 批准号:
10659236 - 财政年份:2022
- 资助金额:
$ 26.18万 - 项目类别:
Scalable Bayesian Network analysis of multimodal FACS and SUMOylation data, with generalization to other big mixed biological datasets
多模式 FACS 和 SUMOylation 数据的可扩展贝叶斯网络分析,并推广到其他大型混合生物数据集
- 批准号:
10205173 - 财政年份:2020
- 资助金额:
$ 26.18万 - 项目类别:
Multivariate Analysis of Candidate Blood Pressure Response Genes in Hypertensives
高血压候选血压反应基因的多变量分析
- 批准号:
7530626 - 财政年份:2009
- 资助金额:
$ 26.18万 - 项目类别:
Multivariate Analysis of Candidate Blood Pressure Response Genes in Hypertensives
高血压候选血压反应基因的多变量分析
- 批准号:
7939919 - 财政年份:2009
- 资助金额:
$ 26.18万 - 项目类别:
相似海外基金
AI-based prediction of the belepharoptosis etiologies by means of machine learning algorithmic analysis of length-tensile force chart of levator muscle
通过提上睑肌长度-拉力图的机器学习算法分析,基于人工智能的上睑下垂病因预测
- 批准号:
22K09863 - 财政年份:2022
- 资助金额:
$ 26.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2013
- 资助金额:
$ 26.18万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2012
- 资助金额:
$ 26.18万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2011
- 资助金额:
$ 26.18万 - 项目类别:
Discovery Grants Program - Individual
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
- 批准号:
22650002 - 财政年份:2010
- 资助金额:
$ 26.18万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2010
- 资助金额:
$ 26.18万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2009
- 资助金额:
$ 26.18万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2008
- 资助金额:
$ 26.18万 - 项目类别:
Discovery Grants Program - Individual
Mathematical & Algorithmic Analysis of Natural and Artificial DNA Sequences
数学
- 批准号:
0218568 - 财政年份:2002
- 资助金额:
$ 26.18万 - 项目类别:
Standard Grant
Algorithmic Analysis and Congestion Control of Connection-Oriented Services in Large Scale Communication Networks.
大规模通信网络中面向连接的服务的算法分析和拥塞控制。
- 批准号:
9404947 - 财政年份:1994
- 资助金额:
$ 26.18万 - 项目类别:
Standard Grant