Multivariate Analysis of Candidate Blood Pressure Response Genes in Hypertensives
高血压候选血压反应基因的多变量分析
基本信息
- 批准号:7530626
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2011-09-29
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsAntihypertensive AgentsAttentionBiologicalBlood PressureCandidate Disease GeneDataData AnalysesData SetDecision TreesDependencyEngineeringEnvironmental Risk FactorGenerationsGenesGeneticGenetic EpistasisGenetic HeterogeneityGenetic VariationGenotypeGoalsGuidelinesHybridsHydrochlorothiazideHypertensionIndividualJointsKidneyKnowledgeLiteratureMeasuresMethodologyMethodsModelingMultivariate AnalysisOther GeneticsPathway interactionsPharmaceutical PreparationsPhenotypePhysiologicalPlant RootsProbabilityRenin-Angiotensin-Aldosterone SystemRoleSamplingSeriesSimulateSodiumStagingStatistical MethodsSystemSystems BiologyTestingThiazide DiureticsTubular formationVariantcomplex biological systemscomputer based statistical methodscomputer sciencedata miningfollow-upgenetic analysisgenetic epidemiologyheuristicsimprovedinnovationinsightinterestnetwork modelsreconstructionresponsethiazidetool
项目摘要
DESCRIPTION (provided by applicant):
The primary goal of this project is to reverse-engineer the interplay of gene variation (in candidate genes influencing renal tubular sodium transport and involved in renin-angiotensin-aldosterone system) and other variables contributing to the interindividual differences in blood pressure (BP) response to a thiazide diuretic. We will apply "pathway", or "systems biology", data analysis methods to the association study of BP response to a hydrochlorothiazide in 585 hypertensive individuals. Previously, they have been genotyped for genetic variation in 16 candidate genes, and measured for a number of intermediate phenotypes and other variables. A series of univariate analyses have been carried out, and a small number of statistically significant predictors of blood pressure response (and certain other intermediate phenotypes of interest) have been identified. However, the scope of these analyses was very limited. We intend to follow up with the multivariate analysis in order to gain the systemic understanding of the dataset and the underlying biological pathways. We intend to apply innovative multivariate analysis methods, predominantly Bayesian Network (BN) modeling and boosted classifiers / clusterers, to the data. Such data mining methods have been very successful when applied to the similar datasets in other domains. Finally, we will use this dataset to confirm, in the context of genetic epidemiology, the practical utility of BN modeling with respect to sensitivity and robustness. We will also investigate various technical aspects of BN reconstruction, as applied to the genetic data.
描述(由申请人提供):
该项目的主要目标是反向工程基因变异的相互作用(在候选基因影响肾小管钠转运和参与肾素-血管紧张素-醛固酮系统)和其他变量有助于血压(BP)对噻嗪类利尿剂反应的个体间差异。我们将应用“通路”或“系统生物学”的数据分析方法对585例高血压患者的血压对氢氯噻嗪的反应进行关联研究。以前,他们已经在16个候选基因中进行了遗传变异的基因分型,并测量了一些中间表型和其他变量。已经进行了一系列单变量分析,并且已经确定了少数具有统计学意义的血压反应预测因子(以及某些其他感兴趣的中间表型)。然而,这些分析的范围非常有限。我们打算跟进多变量分析,以获得数据集和潜在的生物学途径的系统性理解。我们打算将创新的多变量分析方法,主要是贝叶斯网络(BN)建模和提升分类器/聚类器,数据。这种数据挖掘方法在其他领域的类似数据集上得到了很好的应用。最后,我们将使用这个数据集来确认,在遗传流行病学的背景下,BN建模的灵敏度和鲁棒性方面的实际效用。我们还将研究BN重建的各种技术方面,如应用于遗传数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrei Rodin其他文献
Andrei Rodin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrei Rodin', 18)}}的其他基金
An integrated toolkit combining computational systems biology techniques with molecular dynamics simulations to delineate functionality of GPCRs
一个集成的工具包,将计算系统生物学技术与分子动力学模拟相结合,以描述 GPCR 的功能
- 批准号:
10659236 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Scalable Bayesian Network analysis of multimodal FACS and SUMOylation data, with generalization to other big mixed biological datasets
多模式 FACS 和 SUMOylation 数据的可扩展贝叶斯网络分析,并推广到其他大型混合生物数据集
- 批准号:
10359178 - 财政年份:2020
- 资助金额:
$ 7.5万 - 项目类别:
Scalable Bayesian Network analysis of multimodal FACS and SUMOylation data, with generalization to other big mixed biological datasets
多模式 FACS 和 SUMOylation 数据的可扩展贝叶斯网络分析,并推广到其他大型混合生物数据集
- 批准号:
10205173 - 财政年份:2020
- 资助金额:
$ 7.5万 - 项目类别:
Multivariate Analysis of Candidate Blood Pressure Response Genes in Hypertensives
高血压候选血压反应基因的多变量分析
- 批准号:
7939919 - 财政年份:2009
- 资助金额:
$ 7.5万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant