Genomic incorporation of stapled peptides for cost effective discovery and synthesis of novel therapeutics
钉合肽的基因组整合,以经济有效的方式发现和合成新疗法
基本信息
- 批准号:10360415
- 负责人:
- 金额:$ 6.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAmino AcidsAmino Acyl-tRNA SynthetasesBacteriaBacteriophagesBiological AssayBiological AvailabilityBiomimeticsCapsid ProteinsCellsCharacteristicsChemicalsCodon NucleotidesDehydrationDirected Molecular EvolutionDrug KineticsEnzymesEvolutionFDA approvedFaceGenerationsGenomeGenomicsGoalsHuman PathologyHydro-LyasesIn VitroLibrariesLigaseMalignant NeoplasmsMedicineMethodsMinorMolecularOrganismPeptide HydrolasesPeptide LibraryPeptide SynthesisPeptidesPermeabilityPharmaceutical PreparationsPhasePredispositionProchlorococcusProductionPropertyProteinsRNA, Transfer, Amino Acid-SpecificReactionResistanceRoboticsSchemeSerineSiteSolidSpecificitySpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationStructureSulfhydryl CompoundsTP53 geneTherapeuticThreonineTransfer RNATumor Suppressor ProteinsValidationbasechromatin remodelingcostcost effectivedesignimprovedin vivoinhibitorinterestiterative designmutantnovelnovel therapeuticspeptide Apeptide drugprotein protein interactionsmall moleculesmall molecule inhibitorstapled peptidetherapeutic targetthioethertooltranscription factorunnatural amino acids
项目摘要
ABSTRACT
In the era of genome medicine, we are able to precisely identify the molecular susceptibilities of a range of
human pathologies, including cancer. However, many of the bona fide drivers of cancer—transcription factors,
tumor suppressors, and chromatin remodelers (such as p53, myc, and SWI/SNF) cannot be readily targeted by
traditional small-molecule active-site inhibitors, as their functions are modulated by protein interactions. Indeed,
protein-protein interactions constitute nearly 90% of all medicinal targets of interest, yet peptides inhibitors –
which effectively target these interactions – account for only 2% of FDA-approved drugs. Peptide therapies
face major challenges including costly synthesis, in vivo instability from protease degradation, and poor
bioavailability. To remedy these issues, “stapled-peptides” have been proposed to improve both the potency
and pharmacokinetics of such therapies. Unfortunately, these stapled peptides— which contain non-natural
amino acids to covalently maintain a helical structure— cannot be genomically encoded because their
production requires additional chemical steps, which drastically limits the ability to discover and synthesize new
biomimetic peptide therapies and tools. Therefore, the ability to iteratively design, genomically encode, and
reliably synthesize a stable class of these molecules in vivo would yield novel chemical probes for a variety of
protein-protein interactions in cancer.
This proposal seeks to genomically-encode the production of therapeutically relevant, cell-permeable stapled
peptides in a bacterial organism. This would allow for the generation of screenable peptide-libraries, drastically
reduce the cost of synthesis, and ultimately provide a discovery platform for an entirely new class of protein-
protein inhibitors. Utilizing high-throughput, robotic phage-assisted continuous directed evolution (roboPACE),
an in vivo mechanism to produce cell-permeable bio-mimetic peptides will be developed. First, a novel thio-
ether stapling mechanism will be characterized in vitro utilizing a novel non-canonical amino acid [Aim 1].
Second, efficient in vivo incorporation of this amino acid into proteins will be evolved in high-throughput with
roboPACE [Aim 2]. Finally, a promiscuous bacterial synthetase enzyme, will be evolved to efficiently catalyze
the stapling mechanism in order to genomically-encode stapled-peptide production [Aim 3]. Collectively, this
proposal will extend the breadth and throughput of ncAA design and incorporation, and ultimately develop an in
vivo peptide-stapling mechanism in order to treat and characterize presently “undruggable” therapeutic targets
in cancer.
摘要
在基因组医学的时代,我们能够精确地识别一系列的分子亲和性。
人类病理学,包括癌症。然而,许多真正的癌症转录因子驱动因子,
肿瘤抑制因子和染色质重塑因子(如p53、myc和SWI/SNF)不能被
传统的小分子活性位点抑制剂,因为它们的功能是由蛋白质相互作用调节的。的确,
蛋白质-蛋白质相互作用构成了所有感兴趣的药物靶点的近90%,然而肽类抑制剂-
有效靶向这些相互作用的药物-仅占FDA批准药物的2%。多肽疗法
面临的主要挑战包括昂贵的合成,来自蛋白酶降解的体内不稳定性,以及差的
生物利用度为了解决这些问题,已经提出了“钉合肽”来改善免疫调节剂的效力和免疫调节剂的效力。
和药代动力学。不幸的是,这些含有非天然多肽的钉合肽
共价维持螺旋结构的氨基酸-不能被基因组编码,因为它们
生产需要额外的化学步骤,这大大限制了发现和合成新的
仿生肽疗法和工具。因此,迭代设计、基因组编码和
在体内可靠地合成一类稳定的这些分子将产生用于多种生物学和分子生物学的新型化学探针。
癌症中的蛋白质相互作用。
该提议寻求对治疗相关的、细胞可渗透的钉合蛋白的产生进行基因组编码。
细菌有机体中的肽。这将允许产生可筛选的肽库,大大地
降低合成成本,并最终为一类全新的蛋白质提供发现平台-
蛋白质抑制剂利用高通量、机器人噬菌体辅助的连续定向进化(roboPACE),
将开发一种产生细胞可渗透的生物模拟肽的体内机制。首先,一种新颖的硫-
醚钉合机制将利用新型非规范氨基酸在体外表征[目的1]。
第二,将该氨基酸有效地体内掺入蛋白质中将以高通量进行,
roboPACE [Aim 2]。最后,一种混杂的细菌合成酶将被进化成有效地催化
钉合机制,以便基因组编码钉合肽生产[目的3]。总的来说,这
该提案将扩大ncAA设计和合并的广度和吞吐量,并最终开发一种新的
为了治疗和表征目前“不可用药的”治疗靶点,
在癌症中。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enabling high-throughput biology with flexible open-source automation.
- DOI:10.15252/msb.20209942
- 发表时间:2021-03
- 期刊:
- 影响因子:9.9
- 作者:Chory EJ;Gretton DW;DeBenedictis EA;Esvelt KM
- 通讯作者:Esvelt KM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emma J Chory其他文献
Emma J Chory的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emma J Chory', 18)}}的其他基金
Genomic incorporation of stapled peptides for cost effective discovery and synthesis of novel therapeutics
钉合肽的基因组整合,以经济有效的方式发现和合成新疗法
- 批准号:
9909733 - 财政年份:2020
- 资助金额:
$ 6.98万 - 项目类别:
HIJACKING OF SUPER-ENHANCERS FOR CANCER-SPECIFIC THERAPEUTICS
劫持癌症特异性治疗的超级增强剂
- 批准号:
9050039 - 财政年份:2016
- 资助金额:
$ 6.98万 - 项目类别:
HIJACKING OF SUPER-ENHANCERS FOR CANCER-SPECIFIC THERAPEUTICS
劫持癌症特异性治疗的超级增强剂
- 批准号:
9248203 - 财政年份:2016
- 资助金额:
$ 6.98万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 6.98万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 6.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Studentship
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Continuing Grant
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别: