Analysis tools for quantifying protein conformational landscapes using DEER spectroscopy
使用 DEER 光谱定量蛋白质构象景观的分析工具
基本信息
- 批准号:10360468
- 负责人:
- 金额:$ 31.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressBayesian AnalysisBehaviorBiomedical ResearchComputer AnalysisComputer ModelsCryoelectron MicroscopyCrystallographyDataData AnalysesData SetDeerDiseaseElectronsEnvironmentGoalsHumanHuman bodyKineticsLabelLifeLigandsMarkov ChainsMeasuresMembrane ProteinsMethodologyMethodsModelingMolecularMolecular ConformationMotionNoiseOutcomeProcessProtein ConformationProteinsReproducibilityResearch PersonnelResolutionScienceSeriesSideSiteSoftware ToolsSpectrum AnalysisSpin LabelsStatistical Data InterpretationStructural ModelsStructureSystemTechniquesTemperatureTertiary Protein StructureTestingTimeTitrationsUncertaintyVisualizationWorkX-Ray Crystallographybaseconformational conversiondrug developmentexperimental analysisflexibilityimprovedinnovationinsightknowledge basenanoscalenovelnovel therapeuticsopen sourcepreventprotein complexprotein distributionprotein structureprotein structure functiontechnology research and developmenttool
项目摘要
PROJECT SUMMARY/ABSTRACT
This project develops new computational analysis and modeling methods for DEER (double electron-
electron resonance) spectroscopy. DEER is a biostructural technique for the quantification of protein
conformational landscapes and protein motions on the nanometer scale. Protein motions are crucial for
many key molecular processes at the basis of human life and disease. Therefore, DEER provides
important insights that contribute to the knowledge base necessary for drug development. In combination
with X-ray crystallography, NMR and cryo-EM, DEER is part of a complementary set of integrative
experimental biostructural tools. It is especially important for the study of membrane proteins. A major
barrier in the field is the lack of integrated analysis tools for biomedical researchers. This project
addresses this issue by (a) developing methods and tools based on Bayesian statistics for the rigorous
and reproducible analysis of experimental DEER data, providing comprehensive methods for uncertainty
quantification (error bars) in DEER data, and (b) creating advanced computational approaches that utilize
DEER data in the refinement of protein structures based on atomic-resolution ensemble models. Overall,
the goal of the project is to significantly accelerate the workflow of DEER data analysis, interpretation,
and modeling and to increase its rigor, reproducibility and accessibility. This will enable the study of the
structure and dynamics of larger and more complex proteins and protein assemblies, which are
increasingly important in biomedical research.
项目总结/摘要
该项目开发了DEER(双电子-
电子共振)光谱学。DEER是一种用于蛋白质定量的生物结构技术
纳米尺度上的构象景观和蛋白质运动。蛋白质运动对于
许多关键的分子过程是人类生命和疾病的基础。因此,DEER提供
重要的见解,有助于药物开发所需的知识基础。组合
与X射线晶体学,NMR和cryo-EM,DEER是一个互补的一套综合的一部分,
实验生物结构工具。这对膜蛋白的研究尤为重要。一个主要
该领域的一个障碍是缺乏生物医学研究人员的综合分析工具。这个项目
解决这一问题的办法是:(a)开发基于贝叶斯统计的方法和工具,
实验DEER数据的可重复性分析,为不确定性提供全面的方法
DEER数据中的量化(误差条),以及(B)创建利用
DEER数据在基于原子分辨率系综模型的蛋白质结构精化中的应用。总的来说,
该项目的目标是大大加快DEER数据分析,解释,
和建模,并增加其严谨性,可重复性和可访问性。这将有助于研究
更大更复杂的蛋白质和蛋白质组装体的结构和动力学,
在生物医学研究中越来越重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefan Stoll其他文献
Stefan Stoll的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefan Stoll', 18)}}的其他基金
Equipment Supplement: Analysis tools for quantifying protein conformational landscapes using DEER spectroscopy
设备补充:使用 DEER 光谱定量蛋白质构象景观的分析工具
- 批准号:
10385498 - 财政年份:2019
- 资助金额:
$ 31.32万 - 项目类别:
Gating Mechanisms of Retinal Cyclic Nucleotide-Regulated Ion Channels
视网膜环状核苷酸调节离子通道的门控机制
- 批准号:
8694326 - 财政年份:1994
- 资助金额:
$ 31.32万 - 项目类别:
相似海外基金
Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
- 批准号:
2311354 - 财政年份:2023
- 资助金额:
$ 31.32万 - 项目类别:
Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210282 - 财政年份:2022
- 资助金额:
$ 31.32万 - 项目类别:
Standard Grant
Bayesian analysis of generative models of sequence insertion events in HIV-1 envelope glycoproteins
HIV-1 包膜糖蛋白序列插入事件生成模型的贝叶斯分析
- 批准号:
574483-2022 - 财政年份:2022
- 资助金额:
$ 31.32万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210280 - 财政年份:2022
- 资助金额:
$ 31.32万 - 项目类别:
Standard Grant
World Meeting of the International Society for Bayesian Analysis 2022
2022 年国际贝叶斯分析学会世界会议
- 批准号:
2206934 - 财政年份:2022
- 资助金额:
$ 31.32万 - 项目类别:
Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210281 - 财政年份:2022
- 资助金额:
$ 31.32万 - 项目类别:
Standard Grant
Default Bayesian Analysis of Spatial Data
空间数据的默认贝叶斯分析
- 批准号:
2113375 - 财政年份:2021
- 资助金额:
$ 31.32万 - 项目类别:
Standard Grant
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10701881 - 财政年份:2021
- 资助金额:
$ 31.32万 - 项目类别:
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10298072 - 财政年份:2021
- 资助金额:
$ 31.32万 - 项目类别:
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10473754 - 财政年份:2021
- 资助金额:
$ 31.32万 - 项目类别: