Improving the Diagnosis of Liver Disease in Primary Care Patients with Abnormal Liver Function
改善肝功能异常的初级保健患者的肝病诊断
基本信息
- 批准号:10359758
- 负责人:
- 金额:$ 17.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-17 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:Acute Liver FailureAddressAgeAlcohol consumptionAlcoholic Liver DiseasesAlcoholsAmericasAntiviral TherapyBiometryCardiovascular DiseasesCaringCause of DeathChronicCirrhosisClinicClinicalClinical ManagementCommunitiesDataDeath RateDiagnosisDiagnosticDiagnostic ErrorsDiseaseEarly DiagnosisEconomic PolicyElectronic Health RecordEuropeFundingGoalsHealth PolicyHealth Services ResearchHealthcareHeart DiseasesHepatitis C TherapyHepatologyHerbal supplementHyperglycemiaHypertensionIndividualInfectionInformation TechnologyInstitute of Medicine (U.S.)InterventionLaboratoriesLaboratory StudyLeadLinkLiverLiver FailureLiver Function TestsLiver diseasesMalignant NeoplasmsMalignant neoplasm of liverMedicineMentorshipModelingObesityOutcomePatient CarePatient-Focused OutcomesPatientsPatternPersonsPharmacologyPlayPortal HypertensionPositioning AttributePredictive AnalyticsPrimary Care PhysicianPrimary Health CareProcessRecording of previous eventsResearchResourcesRiskRisk EstimateRoleTestingTimeTrainingUnited StatesViral hepatitisWorkaccurate diagnosisbasecareerclinical riskclinically significantdrug induced liver injuryeffectiveness evaluationend stage liver diseaseexperiencehealth care deliveryhealth economicsimprovedintravenous drug useliver functionmortalitynon-alcoholic fatty liver diseasenovel strategiespredictive modelingprimary care settingpsychosocialsupport tools
项目摘要
Abstract
Improving the Diagnosis of Liver Disease in Primary Care Patients with Abnormal Liver Function Tests
Through Predictive Modeling
Reducing diagnostic error has been identified by the Institute of Medicine as a top national priority. Diagnostic
errors pervade all of healthcare, with the average individual experiencing one major error during their lifetime.
Therefore, improving the diagnostic process and reducing diagnostic error is not only highly appropriate for all
patients, but will play a crucial role in optimizing the quality and value of healthcare delivery in the United
States.1
Liver disease, with complications including acute liver failure, cirrhosis, and liver cancer ranks as a leading
cause of death in America and over recent years has had a significant climb in age-adjusted mortality, while
death rates from heart disease and cancer have fallen.2 Despite the increasing preventability of liver-related
conditions through early recognition and treatment, the toll of chronic and end stage liver disease continues to
rise.3
The traditional diagnostic process, a synthesis of information gathered from history, physical exam, and
laboratory testing, performs poorly in the detection of early liver disease.4,5 Instead, clinicians rely more heavily
on laboratory studies, and liver function tests (LFTs) in particular.6 Abnormal LFTs are among the most
frequently encountered findings in medicine.7,8 Currently, primary care clinicians currently lack the ability to
consistently identify liver-related disease from these abnormalities.9-12
Preliminary data in primary care emphasize the immense scope of the problem; in studies from Europe, LFTs
have been found elsewhere to be abnormal in nearly 1 in 5 people.13,14 In our preliminary studies, we have up
to 40% of patients seen in an academic primary care clinic possessed at least one abnormal LFT. Further,
these abnormal liver tests are inappropriately or inadequately followed-up. These data and our own
experience indicate that primary care physicians (PCPs) lack the resources to reliably identify and accurately
diagnose liver-related diseases amongst these many abnormal LFTs.
In this proposal, the candidate and his mentorship team seek to harness inter-professional teamwork and
information technology to reduce diagnostic error. They will identify clinical and demographic variables of
patients with abnormal LFTs associated with specific liver-related diagnoses in primary care (Aim 1).
Additionally, they will develop and validate a predictive model to identify patients with abnormal LFTs at risk for
liver-related diagnoses (Aim 2). Lastly, they will create a decision support tool application to aid PCPs
confronted with abnormal LFTs to promptly and accurately diagnose liver disease (Aim 3).
摘要
改善肝功能检查异常的初级保健患者的肝病诊断
通过预测建模
减少诊断错误已被医学研究所确定为国家的首要任务。诊断
错误遍布整个医疗保健领域,平均每个人在一生中都会经历一次重大错误。
因此,改进诊断过程和减少诊断错误不仅对所有人都非常合适,
患者,但将在优化美国医疗保健服务的质量和价值方面发挥关键作用。
国家1
肝脏疾病,并发症包括急性肝衰竭,肝硬化和肝癌,
近年来,美国的年龄调整死亡率大幅攀升,
心脏病和癌症的死亡率已经下降。2尽管肝脏相关疾病的可预防性增加,
通过早期识别和治疗,慢性和终末期肝病的死亡人数继续增加,
上升3
传统的诊断过程是综合从病史、体格检查和
实验室检测在早期肝病的检测中表现不佳。4,5相反,临床医生更严重地依赖于
实验室检查,特别是肝功能检查(LFT)。6异常LFT是最常见的
目前,初级保健临床医生目前缺乏能力,
一致地从这些异常中识别肝脏相关疾病。9 -12
初级保健的初步数据强调了这个问题的巨大范围;在欧洲的研究中,
在其他地方发现,近五分之一的人有异常。13,14在我们的初步研究中,
到40%的患者在学术初级保健诊所至少有一个异常LFT。此外,本发明的目的是,
对这些异常的肝脏测试进行不适当或不充分的跟踪。这些数据和我们自己的数据
经验表明,初级保健医生(PCP)缺乏可靠识别和准确识别
在这些异常LFT中诊断肝脏相关疾病。
在本提案中,候选人及其导师团队寻求利用跨专业团队合作,
信息技术,以减少诊断错误。他们将确定临床和人口统计学变量,
在初级保健中与特定肝脏相关诊断相关的异常LFT患者(目的1)。
此外,他们还将开发和验证一种预测模型,以识别具有异常LFT的患者,
肝脏相关诊断(目标2)。最后,他们将创建一个决策支持工具应用程序,以帮助PCP
面对异常LFT,以及时准确地诊断肝病(目的3)。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
When Do Clinicians Follow-up Abnormal Liver Tests in Primary Care?
临床医生何时对初级保健中的异常肝脏检查进行随访?
- DOI:10.1016/j.amjms.2019.04.017
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Schreiner,AndrewD;Bian,John;Zhang,Jingwen;Kirkland,ElizabethB;Heincelman,MarcE;Schumann3rd,SamuelO;Mauldin,PatrickD;Moran,WilliamP;Rockey,DonC
- 通讯作者:Rockey,DonC
Abnormal Liver Enzymes.
肝酶异常。
- DOI:10.1007/s11606-019-05172-7
- 发表时间:2019
- 期刊:
- 影响因子:5.7
- 作者:Bian,John;Schreiner,AndrewD;Rockey,DonC
- 通讯作者:Rockey,DonC
Evaluation of liver test abnormalities in a patient-centered medical home: do liver test patterns matter?
以患者为中心的医疗之家中肝脏测试异常的评估:肝脏测试模式重要吗?
- DOI:10.1136/jim-2018-000788
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Schreiner,AndrewD;Moran,WilliamP;Zhang,Jingwen;Kirkland,ElizabethB;Heincelman,MarcE;SchumannIii,SamuelO;Mauldin,PatrickD;Rockey,DonC
- 通讯作者:Rockey,DonC
The Cost of Hepatitis C Testing Strategies in Primary Care Patients with Abnormal Transaminases.
转氨酶异常的初级保健患者丙型肝炎检测策略的成本。
- DOI:10.1007/s11606-019-05250-w
- 发表时间:2020
- 期刊:
- 影响因子:5.7
- 作者:Schreiner,AndrewD;Rockey,DonC;Moran,WilliamP
- 通讯作者:Moran,WilliamP
Advanced liver fibrosis and the metabolic syndrome in a primary care setting.
- DOI:10.1002/dmrr.3452
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Schreiner AD;Zhang J;Durkalski-Mauldin V;Livingston S;Marsden J;Bian J;Mauldin PD;Moran WP;Rockey DC
- 通讯作者:Rockey DC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew David Schreiner其他文献
Andrew David Schreiner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew David Schreiner', 18)}}的其他基金
Improving the Diagnosis and Fibrosis Risk Assessment of Nonalcoholic Fatty Liver Disease in Primary Care Patients with Abnormal Liver Chemistries
改善肝脏化学异常的初级保健患者非酒精性脂肪肝的诊断和纤维化风险评估
- 批准号:
10452095 - 财政年份:2022
- 资助金额:
$ 17.25万 - 项目类别:
Improving the Diagnosis and Fibrosis Risk Assessment of Nonalcoholic Fatty Liver Disease in Primary Care Patients with Abnormal Liver Chemistries
改善肝脏化学异常的初级保健患者非酒精性脂肪肝的诊断和纤维化风险评估
- 批准号:
10616810 - 财政年份:2022
- 资助金额:
$ 17.25万 - 项目类别:
Improving the Diagnosis of Liver Disease in Primary Care Patients with Abnormal Liver Function
改善肝功能异常的初级保健患者的肝病诊断
- 批准号:
10163178 - 财政年份:2018
- 资助金额:
$ 17.25万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 17.25万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 17.25万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 17.25万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 17.25万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 17.25万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 17.25万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 17.25万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 17.25万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 17.25万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 17.25万 - 项目类别:
Research Grant