Machine learning-based biomechanical analysis for thoracic aortic aneurysm rupture risk assessment

基于机器学习的生物力学分析胸主动脉瘤破裂风险评估

基本信息

  • 批准号:
    10365444
  • 负责人:
  • 金额:
    $ 60.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-03 至 2026-11-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Aortic aneurysm disease ranks consistently in the top 20 causes of death in the U.S. population. Thoracic aortic aneurysm (TAA) is a leading cause of death in adults. The progression of TAA is a silent process, yet rupture/dissection can occur suddenly, which often causes death. The deadly events are preventable by elective surgical repair, and the current criterion for surgical intervention states that surgery should be performed when TAA maximum diameter reaches 5 to 5.5 cm. However, this criterion cannot assess the risk of smaller TAAs (diameter≤5cm). It is estimated that there are millions of TAA patients in the U.S. with smaller TAAs, and these patients are unfortunately ignored by the current criterion. Thus, in this project, we propose an innovative approach of integrating machine learning (ML) and computational biomechanics for risk assessment of smaller TAAs. To achieve this goal, we will develop (1) ML models for automated thoracic aorta geometry reconstruction from 3D clinical CT images, which will enable a fast and streamlined analysis of TAA risk, (2) ML models for realtime TAA stress analysis, and (3) a probabilistic risk index that fuses the measured and computed patient characteristics (e.g. geometry, stress, material strength, etc) and takes into account uncertainties from different sources. The proposed approach will be developed and validated on an existing dataset of 1000 patients and a new dataset to be assembled from a longitudinal follow-up study of 600 patients, which will be the first large-scale study of machine learning-based biomechanical analysis for TAA risk assessment. This study will lead to a breakthrough in the fields of cardiovascular computational modeling and applied machine learning, provide new insights on how to better assess TAA risk, and reduce death by the silent and sudden killer of TAA disease.
项目摘要 在美国,主动脉瘤疾病一直排在前20位死亡原因之列。 人口胸主动脉瘤(TAA)是成人死亡的主要原因。进展 胸主动脉瘤是一个无声的过程,但破裂/剥离可能突然发生,这往往导致死亡。 这些致命的事件是可以通过选择性手术修复来预防的, 干预措施指出,当胸主动脉瘤最大直径达到5至10 mm时,应进行手术。 5.5厘米但是,该标准无法评估较小TAA(直径≤ 5 cm)的风险。是 据估计,美国有数百万TAA患者的TAA较小,这些患者 不幸的是,目前的标准忽略了这一点。因此,在这个项目中,我们提出了一个创新的 整合机器学习(ML)和计算生物力学的风险方法 评估较小的TAA。为了实现这一目标,我们将开发(1)ML模型, 从3D临床CT图像重建胸主动脉几何形状,这将使快速和 TAA风险的简化分析,(2)实时TAA压力分析的ML模型,以及(3) 融合测量和计算的患者特征的概率风险指数(例如, 几何形状、应力、材料强度等),并考虑到来自不同 源将在现有的1000个数据集上开发和验证所提出的方法 患者和从600例患者的纵向随访研究中收集的新数据集, 这将是第一个大规模的基于机器学习的TAA生物力学分析研究 风险评估这项研究将导致心血管领域的突破 计算建模和应用机器学习,为如何更好地 评估TAA风险,并减少TAA疾病的沉默和突然杀手造成的死亡。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liang Liang其他文献

Liang Liang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liang Liang', 18)}}的其他基金

Functional circuitry and computation of the visual thalamus
视觉丘脑的功能电路和计算
  • 批准号:
    10577537
  • 财政年份:
    2023
  • 资助金额:
    $ 60.47万
  • 项目类别:
Machine learning-based biomechanical analysis for thoracic aortic aneurysm rupture risk assessment
基于机器学习的生物力学分析胸主动脉瘤破裂风险评估
  • 批准号:
    10534234
  • 财政年份:
    2021
  • 资助金额:
    $ 60.47万
  • 项目类别:

相似海外基金

Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
  • 批准号:
    MR/Z503605/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60.47万
  • 项目类别:
    Research Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 60.47万
  • 项目类别:
    Standard Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 60.47万
  • 项目类别:
    Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 60.47万
  • 项目类别:
    Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
  • 批准号:
    24K12150
  • 财政年份:
    2024
  • 资助金额:
    $ 60.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
  • 批准号:
    DE240100561
  • 财政年份:
    2024
  • 资助金额:
    $ 60.47万
  • 项目类别:
    Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
  • 批准号:
    10065645
  • 财政年份:
    2023
  • 资助金额:
    $ 60.47万
  • 项目类别:
    Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 60.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
  • 批准号:
    23K07552
  • 财政年份:
    2023
  • 资助金额:
    $ 60.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 60.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了