Generalizable prediction of medication adherence in heart failure
心力衰竭药物依从性的普遍预测
基本信息
- 批准号:10365929
- 负责人:
- 金额:$ 74.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-15 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAdherenceAlgorithmsBig DataCalibrationCessation of lifeClinicalClinical DataCommunitiesComplexDataData ElementDevelopmentEconomic FactorsElectronic Health RecordEnsureGoalsHealthHealth systemHealthcare SystemsHeart failureIndividualInterventionLeadLinkLocationMachine LearningMalignant NeoplasmsMeasurementMedicineModelingNeighborhoodsOutcomePatient-Focused OutcomesPatientsPerformancePharmaceutical PreparationsPharmacy facilityPopulation HeterogeneityProcessProviderRaceRiskRisk FactorsSystemTechniquesTimeUpdateUrban HealthValidationWorkalgorithm developmentbaseburden of illnessclinical carecontextual factorselectronic dataevidence baseflexibilityhealth datahigh riskhospital readmissionhospitalization ratesimprovedimproved outcomeinnovationmachine learning algorithmmachine learning modelmedication compliancemedication nonadherencemortalitynovelpatient populationpatient subsetspoint of carepopulation basedprediction algorithmpredictive modelingsocialsocial determinantssocial factorssocial health determinantssocioeconomicssupervised learningtool
项目摘要
Project Summary/Abstract
Heart failure (HF) is associated with high rates of hospitalization and mortality. While a number of evidence-
based therapies have been shown to improve outcomes for patients with HF, nearly half of these patients are
not regularly taking their medications. Although medication adherence can be improved through timely
interventions, it is challenging for clinicians to accurately identify and predict medication non-adherence at the
point of care. The challenge persists partly because medication adherence is a complex process influenced by
an interplay of a multitude of patient-, provider-, system-, community-, and therapy-related factors. This gap in
identifying patients at risk of non-adherence can be addressed through increasing availability of relevant data
from electronic health records (EHRs), which affords the potential to make accurate, real time predictions of
adherence in HF. In particular, recent linkages of EHR and pharmacy data has created opportunity for
incorporation of prior medication fills into EHR-based adherence prediction models that are updated
continuously. Using machine learning (ML) techniques with such data allows for incorporation of a large
number of intercorrelated risk factors and their interactions into models and for accommodating continuous
updates as new information becomes available. Our objective is to build a ML-based algorithm to predict
adherence among patients with HF. The specific aims are: 1) to develop supervised ML algorithms to predict
medication adherence among HF patients, using EHR clinical data, linked pharmacy fill data, and location-
based social determinants data from a large, urban health system that cares for a diverse patient population; 2)
to assess fairness of the developed algorithms by evaluating cross-validated prediction and calibration on
patient subgroups based on social and economic factors, to ensure that the desirable prediction performance
is maintained for the diverse groups; and 3) to assess generalizability of the algorithms through validation in a
second large, urban health system caring for a diverse population. Our approach is innovative and novel in
several ways. First, we will take advantage of linkages between pharmacy fill information and the EHR to
incorporate pharmacy data in our models. Second, we utilize geocoding of patient addresses combined with
publicly available data to incorporate neighborhood-level social determinants of health, which are among the
most important predictors of adherence, into our models. Third, we will assess fairness of the model by
evaluating the predictive performance and calibration on patients from diverse backgrounds. Fourth, we will
ensure generalizability of the prediction algorithm by developing it in one diverse health system and validating
the algorithm in a second diverse health system. These models will be developed such that they can be used
for point-of-care adherence prediction. Our long term goal is to be able to implement them into the EHR, at
which point they can be incorporated into interventions to address medication adherence and, ultimately,
improve both adherence and clinical outcomes for patients with HF.
项目总结/摘要
心力衰竭(HF)与高住院率和死亡率相关。尽管有一些证据-
基础治疗已被证明可以改善HF患者的结局,近一半的患者
不定期服药。虽然药物治疗的依从性可以通过及时
由于干预措施的限制,临床医生在治疗期间准确识别和预测药物不依从性是一项挑战。
护理点。挑战仍然存在,部分原因是药物依从性是一个复杂的过程,
许多患者、提供者、系统、社区和治疗相关因素的相互作用。中的这一空白
通过增加相关数据的可用性,可以识别存在不依从风险的患者
从电子健康记录(EHR),它提供了准确的潜力,真实的时间预测,
HF中的依从性。特别是,最近EHR和药房数据的联系为以下方面创造了机会:
将先前的药物治疗填充合并到更新的基于EHR的依从性预测模型中
不断地。使用机器学习(ML)技术与这些数据允许纳入一个大的
将相互关联的风险因素及其相互作用纳入模型,
随着新信息的出现而更新。我们的目标是建立一个基于ML的算法来预测
HF患者的依从性。具体目标是:1)开发监督ML算法来预测
HF患者的药物依从性,使用EHR临床数据,链接的药房填充数据和位置-
基于来自照顾不同患者人群的大型城市卫生系统的社会决定因素数据; 2)
通过评估交叉验证的预测和校准来评估所开发算法的公平性,
基于社会和经济因素的患者亚组,以确保理想的预测性能
为不同的群体保持;和3)通过在一个
第二个大的城市卫生系统照顾不同的人口。我们的方法是创新和新颖的,
几种方式。首先,我们将利用药房配药信息和EHR之间的联系,
将药房数据纳入我们的模型。其次,我们利用患者地址的地理编码,
公共可用数据,以纳入社区一级的健康社会决定因素,这些因素是
最重要的依从性预测因素纳入我们的模型中。第三,我们将评估模型的公平性,
评估来自不同背景的患者的预测性能和校准。四是
通过在一个不同的卫生系统中开发预测算法并进行验证,确保预测算法的通用性
在第二个不同的健康系统中的算法。这些模型将被开发,以便它们可以用于
用于即时护理依从性预测。我们的长期目标是能够将它们实施到EHR中,
在这一点上,他们可以被纳入干预措施,以解决药物依从性,最终,
改善HF患者的依从性和临床结局。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samrachana Adhikari其他文献
Samrachana Adhikari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samrachana Adhikari', 18)}}的其他基金
Generalizable prediction of medication adherence in heart failure
心力衰竭药物依从性的普遍预测
- 批准号:
10851226 - 财政年份:2021
- 资助金额:
$ 74.71万 - 项目类别:
Generalizable prediction of medication adherence in heart failure
心力衰竭药物依从性的普遍预测
- 批准号:
10095553 - 财政年份:2021
- 资助金额:
$ 74.71万 - 项目类别:
Generalizable prediction of medication adherence in heart failure
心力衰竭药物依从性的普遍预测
- 批准号:
10589101 - 财政年份:2021
- 资助金额:
$ 74.71万 - 项目类别:
相似海外基金
I-Corps: Medication Adherence System
I-Corps:药物依从性系统
- 批准号:
2325465 - 财政年份:2023
- 资助金额:
$ 74.71万 - 项目类别:
Standard Grant
Improving Repositioning Adherence in Home Care: Supporting Pressure Injury Care and Prevention
提高家庭护理中的重新定位依从性:支持压力损伤护理和预防
- 批准号:
490105 - 财政年份:2023
- 资助金额:
$ 74.71万 - 项目类别:
Operating Grants
An innovative, AI-driven prehabilitation platform that increases adherence, enhances post-treatment outcomes by at least 50%, and provides cost savings of 95%.
%20创新、%20AI驱动%20康复%20平台%20%20增加%20依从性、%20增强%20治疗后%20结果%20by%20at%20至少%2050%、%20和%20提供%20成本%20节省%20of%2095%
- 批准号:
10057526 - 财政年份:2023
- 资助金额:
$ 74.71万 - 项目类别:
Grant for R&D
CO-LEADER: Intervention to Improve Patient-Provider Communication and Medication Adherence among Patients with Systemic Lupus Erythematosus
共同领导者:改善系统性红斑狼疮患者的医患沟通和药物依从性的干预措施
- 批准号:
10772887 - 财政年份:2023
- 资助金额:
$ 74.71万 - 项目类别:
Nuestro Sueno: Cultural Adaptation of a Couples Intervention to Improve PAP Adherence and Sleep Health Among Latino Couples with Implications for Alzheimer’s Disease Risk
Nuestro Sueno:夫妻干预措施的文化适应,以改善拉丁裔夫妇的 PAP 依从性和睡眠健康,对阿尔茨海默病风险产生影响
- 批准号:
10766947 - 财政年份:2023
- 资助金额:
$ 74.71万 - 项目类别:
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
- 批准号:
10594350 - 财政年份:2023
- 资助金额:
$ 74.71万 - 项目类别:
Unintrusive Pediatric Logging Orthotic Adherence Device: UPLOAD
非侵入式儿科记录矫形器粘附装置:上传
- 批准号:
10821172 - 财政年份:2023
- 资助金额:
$ 74.71万 - 项目类别:
Antiretroviral therapy adherence and exploratory proteomics in virally suppressed people with HIV and stroke
病毒抑制的艾滋病毒和中风患者的抗逆转录病毒治疗依从性和探索性蛋白质组学
- 批准号:
10748465 - 财政年份:2023
- 资助金额:
$ 74.71万 - 项目类别:
Improving medication adherence and disease control for patients with multimorbidity: the role of price transparency tools
提高多病患者的药物依从性和疾病控制:价格透明度工具的作用
- 批准号:
10591441 - 财政年份:2023
- 资助金额:
$ 74.71万 - 项目类别:
Development and implementation of peer-facilitated decision-making and referral support to increase uptake and adherence to HIV pre-exposure prophylaxis in African Caribbean and Black communities in Ontario
制定和实施同行协助决策和转介支持,以提高非洲加勒比地区和安大略省黑人社区对艾滋病毒暴露前预防的接受和依从性
- 批准号:
491109 - 财政年份:2023
- 资助金额:
$ 74.71万 - 项目类别:
Fellowship Programs














{{item.name}}会员




