Generalizable prediction of medication adherence in heart failure

心力衰竭药物依从性的普遍预测

基本信息

项目摘要

Heart failure (HF) is associated with high rates of hospitalization and mortality. While a number of evidence- based therapies have been shown to improve outcomes for patients with HF, nearly half of these patients are not regularly taking their medications. Although medication adherence can be improved through timely interventions, it is challenging for clinicians to accurately identify and predict medication non-adherence at the point of care. The challenge persists partly because medication adherence is a complex process influenced by an interplay of a multitude of patient-, provider-, system-, community-, and therapy-related factors. This gap in identifying patients at risk of non-adherence can be addressed through increasing availability of relevant data from electronic health records (EHRs), which affords the potential to make accurate, real time predictions of adherence in HF. In particular, recent linkages of EHR and pharmacy data has created opportunity for incorporation of prior medication fills into EHR-based adherence prediction models that are updated continuously. Using machine learning (ML) techniques with such data allows for incorporation of a large number of intercorrelated risk factors and their interactions into models and for accommodating continuous updates as new information becomes available. Our objective is to build a ML-based algorithm to predict adherence among patients with HF. The specific aims are: 1) to develop supervised ML algorithms to predict medication adherence among HF patients, using EHR clinical data, linked pharmacy fill data, and location- based social determinants data from a large, urban health system that cares for a diverse patient population; 2) to assess fairness of the developed algorithms by evaluating cross-validated prediction and calibration on patient subgroups based on social and economic factors, to ensure that the desirable prediction performance is maintained for the diverse groups; and 3) to assess generalizability of the algorithms through validation in a second large, urban health system caring for a diverse population. Our approach is innovative and novel in several ways. First, we will take advantage of linkages between pharmacy fill information and the EHR to incorporate pharmacy data in our models. Second, we utilize geocoding of patient addresses combined with publicly available data to incorporate neighborhood-level social determinants of health, which are among the most important predictors of adherence, into our models. Third, we will assess fairness of the model by evaluating the predictive performance and calibration on patients from diverse backgrounds. Fourth, we will ensure generalizability of the prediction algorithm by developing it in one diverse health system and validating the algorithm in a second diverse health system. These models will be developed such that they can be used for point-of-care adherence prediction. Our long term goal is to be able to implement them into the EHR, at which point they can be incorporated into interventions to address medication adherence and, ultimately, improve both adherence and clinical outcomes for patients with HF.
心力衰竭(HF)与高住院率和高死亡率相关。而一些证据——

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samrachana Adhikari其他文献

Samrachana Adhikari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samrachana Adhikari', 18)}}的其他基金

Generalizable prediction of medication adherence in heart failure
心力衰竭药物依从性的普遍预测
  • 批准号:
    10095553
  • 财政年份:
    2021
  • 资助金额:
    $ 5.47万
  • 项目类别:
Generalizable prediction of medication adherence in heart failure
心力衰竭药物依从性的普遍预测
  • 批准号:
    10589101
  • 财政年份:
    2021
  • 资助金额:
    $ 5.47万
  • 项目类别:
Generalizable prediction of medication adherence in heart failure
心力衰竭药物依从性的普遍预测
  • 批准号:
    10365929
  • 财政年份:
    2021
  • 资助金额:
    $ 5.47万
  • 项目类别:

相似海外基金

An innovative, AI-driven prehabilitation platform that increases adherence, enhances post-treatment outcomes by at least 50%, and provides cost savings of 95%.
%20创新、%20AI驱动%20康复%20平台%20%20增加%20依从性、%20增强%20治疗后%20结果%20by%20at%20至少%2050%、%20和%20提供%20成本%20节省%20of%2095%
  • 批准号:
    10057526
  • 财政年份:
    2023
  • 资助金额:
    $ 5.47万
  • 项目类别:
    Grant for R&D
Improving Repositioning Adherence in Home Care: Supporting Pressure Injury Care and Prevention
提高家庭护理中的重新定位依从性:支持压力损伤护理和预防
  • 批准号:
    490105
  • 财政年份:
    2023
  • 资助金额:
    $ 5.47万
  • 项目类别:
    Operating Grants
I-Corps: Medication Adherence System
I-Corps:药物依从性系统
  • 批准号:
    2325465
  • 财政年份:
    2023
  • 资助金额:
    $ 5.47万
  • 项目类别:
    Standard Grant
Unintrusive Pediatric Logging Orthotic Adherence Device: UPLOAD
非侵入式儿科记录矫形器粘附装置:上传
  • 批准号:
    10821172
  • 财政年份:
    2023
  • 资助金额:
    $ 5.47万
  • 项目类别:
Nuestro Sueno: Cultural Adaptation of a Couples Intervention to Improve PAP Adherence and Sleep Health Among Latino Couples with Implications for Alzheimer’s Disease Risk
Nuestro Sueno:夫妻干预措施的文化适应,以改善拉丁裔夫妇的 PAP 依从性和睡眠健康,对阿尔茨海默病风险产生影响
  • 批准号:
    10766947
  • 财政年份:
    2023
  • 资助金额:
    $ 5.47万
  • 项目类别:
CO-LEADER: Intervention to Improve Patient-Provider Communication and Medication Adherence among Patients with Systemic Lupus Erythematosus
共同领导者:改善系统性红斑狼疮患者的医患沟通和药物依从性的干预措施
  • 批准号:
    10772887
  • 财政年份:
    2023
  • 资助金额:
    $ 5.47万
  • 项目类别:
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
  • 批准号:
    10594350
  • 财政年份:
    2023
  • 资助金额:
    $ 5.47万
  • 项目类别:
Antiretroviral therapy adherence and exploratory proteomics in virally suppressed people with HIV and stroke
病毒抑制的艾滋病毒和中风患者的抗逆转录病毒治疗依从性和探索性蛋白质组学
  • 批准号:
    10748465
  • 财政年份:
    2023
  • 资助金额:
    $ 5.47万
  • 项目类别:
Improving medication adherence and disease control for patients with multimorbidity: the role of price transparency tools
提高多病患者的药物依从性和疾病控制:价格透明度工具的作用
  • 批准号:
    10591441
  • 财政年份:
    2023
  • 资助金额:
    $ 5.47万
  • 项目类别:
Development and implementation of peer-facilitated decision-making and referral support to increase uptake and adherence to HIV pre-exposure prophylaxis in African Caribbean and Black communities in Ontario
制定和实施同行协助决策和转介支持,以提高非洲加勒比地区和安大略省黑人社区对艾滋病毒暴露前预防的接受和依从性
  • 批准号:
    491109
  • 财政年份:
    2023
  • 资助金额:
    $ 5.47万
  • 项目类别:
    Fellowship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了