Citrate Metabonegenic Regulation for the next Generation of Orthopedic Biomaterial Design
下一代骨科生物材料设计的柠檬酸代谢调节
基本信息
- 批准号:10364767
- 负责人:
- 金额:$ 34.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:5&apos-AMP-activated protein kinaseAddressAnatomyAnimal ModelAnimalsArchitectureBiocompatible MaterialsBiomimeticsBone DevelopmentBone MatrixBone RegenerationBone TissueCell Culture TechniquesCellsCellular Metabolic ProcessCephalicChemicalsChronicCitratesComplexConsumptionCrystallizationDefectDevelopmentDevelopmental ProcessEnergy MetabolismFRAP1 geneImplantInflammationInflammatory ResponseKnowledgeMechanicsMediatingMesenchymal DifferentiationMesenchymal Stem CellsMetabolicMineralsModelingMolecularOrthopedicsOsteoblastsOsteogenesisPathway interactionsPerformancePhenotypePhysiologyPlayProcessProtein BiosynthesisProtein KinaseProteinsRattusRegulationResearchRoleSignal TransductionSkeletal systemTestingTissue EngineeringTissuesTranslatingbasebonebone repairdesignextracellularin vivomimeticsmineralizationnext generationnovelosteogenicscaffoldstem cell differentiationstem cellsuptake
项目摘要
Research Summary
The objectives of this project are to elucidate an unexplored metabonegenic regulation of citrate for bone
development, and to translate these understandings towards the design of novel biomimetic citrate-presenting
bone biomaterials for orthopedic applications. Although significant progress has been made in the
development of orthopedic biomaterials, the currently available materials are limited by their inabilities to mimic
the native tissue composition, weak mechanical strength, minimal osteoinductivity, significant inflammatory
responses, poor bone integration, and slow bone regeneration. We hypothesize that the uptake of extracellular
citrate via transporter SLC13a5 could elevate cellular energy status through modulation of cell metabolism,
which in turn leads to a facilitated osteogenic phenotype progression by inhibiting the activity of AMP-activated
protein kinase (AMPK). This new citrate-based regulation of bone development is referred to as citrate
metabonegenic regulation (Fig. 1). The identification of new and unexplored citrate-based strategies to
promote osteogenic differentiation of mesenchymal stem cell can be harnessed to more efficiently design the
next generation of biomimetic orthopedic biomaterials to address the limitations of the previous materials. To
test our hypotheses and achieve the objectives of this project, three aims are proposed: Aim 1) to elucidate the
metabonegenic regulatory effect of citrate for MSCs osteogenic differentiation; Aim 2) to apply the
understandings of the citrate molecular mechanism in the design of biomimetic citrate-presenting biomaterials
to mediate MSCs differentiation; Aim 3) To evaluate the in vivo performance of anatomically and chemically
mimetic citrate-presenting scaffolds in a rat critically sized cranial bone defect model. It is very intriguing that
the unprecedented knowledge on the unexplored citrate mechanism will enable us to design the next
generation of biomimetic dynamic orthopedic implants that may present citrate signals in demand during
cellular and tissue development. The understanding on the citrate metabonegenic regulation for bone stem cell
culture and dynamic bone materials design will not only advance the field of bone tissue engineering, but also
profoundly impact a wide array of other conditions such as MSC adipogenic differentiation since MSCs is
multipotent and the adipogenic differentiation also has high energy demand.
研究综述
本项目的目的是阐明柠檬酸盐对骨代谢的调节作用
发展,并将这些理解转化为新的仿生柠檬酸盐呈递的设计,
骨生物材料用于矫形外科应用。虽然在这方面取得了重大进展,
骨科生物材料的发展,目前可用的材料是有限的,他们无法模仿
天然组织成分、弱机械强度、最小骨诱导性、显著炎性
反应,骨整合差和骨再生慢。我们假设细胞外物质的吸收
柠檬酸盐通过转运蛋白SLC 13 a5可以通过调节细胞代谢来提高细胞能量状态,
这反过来又通过抑制AMP活化的
蛋白激酶(AMPK)。这种新的以柠檬酸盐为基础的调节骨发育的作用被称为柠檬酸盐
代谢产物调控(图1)。确定新的和未探索的基于柠檬酸盐的策略,
促进间充质干细胞的成骨分化可以被利用来更有效地设计
下一代仿生骨科生物材料,以解决以前的材料的局限性。到
为了验证我们的假设并实现本项目的目标,提出了三个目标:目标1)阐明
柠檬酸盐对MSCs成骨分化的代谢调节作用;目的2)应用
仿生柠檬酸盐递呈生物材料设计中柠檬酸盐分子机理的认识
目的3)从解剖学和化学上评价细胞的体内性能,
模拟柠檬酸盐呈递支架在大鼠临界尺寸颅骨缺损模型中的应用。非常有趣的是,
关于未探索的柠檬酸盐机制的前所未有的知识将使我们能够设计下一个
仿生动态骨科植入物的产生,
细胞和组织发育。柠檬酸盐对骨干细胞代谢调控的认识
培养和动态骨材料设计不仅将推动骨组织工程领域的发展,
深刻地影响了广泛的其他条件,如MSC成脂分化,因为MSC是
多能和成脂分化也具有高能量需求。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Citrate-based fluorometric sensor for multi-halide sensing.
- DOI:10.1016/j.smaim.2022.05.001
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Wang, Dingbowen;Xia, Tunan;Wang, Yuqi;Chen, Yizhu;Zhang, Chenji;Murray, William;Schultz, Adam Thomas;Liu, Zhiwen;Yang, Jian
- 通讯作者:Yang, Jian
Angiogenic hydrogels for dental pulp revascularization.
- DOI:10.1016/j.actbio.2021.03.001
- 发表时间:2021-05
- 期刊:
- 影响因子:9.7
- 作者:Siddiqui Z;Sarkar B;Kim KK;Kadincesme N;Paul R;Kumar A;Kobayashi Y;Roy A;Choudhury M;Yang J;Shimizu E;Kumar VA
- 通讯作者:Kumar VA
Novel Metal Nanomaterials to Promote Angiogenesis in Tissue Regeneration.
- DOI:10.1016/j.engreg.2023.03.008
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:Yoshida, Yuki G;Yan, Su;Xu, Hui;Yang, Jian
- 通讯作者:Yang, Jian
Phototherapy and optical waveguides for the treatment of infection.
- DOI:10.1016/j.addr.2021.114036
- 发表时间:2021-12
- 期刊:
- 影响因子:16.1
- 作者:Wang D;Kuzma ML;Tan X;He TC;Dong C;Liu Z;Yang J
- 通讯作者:Yang J
Polymeric biomaterials for biophotonic applications.
- DOI:10.1016/j.bioactmat.2018.07.001
- 发表时间:2018-12
- 期刊:
- 影响因子:18.9
- 作者:Shan D;Gerhard E;Zhang C;Tierney JW;Xie D;Liu Z;Yang J
- 通讯作者:Yang J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jian Yang其他文献
Jian Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jian Yang', 18)}}的其他基金
Molecular physiology and biophysics of cyclic nucleotide-gated channels
环核苷酸门控通道的分子生理学和生物物理学
- 批准号:
10441791 - 财政年份:2022
- 资助金额:
$ 34.07万 - 项目类别:
Molecular physiology and biophysics of cyclic nucleotide-gated channels
环核苷酸门控通道的分子生理学和生物物理学
- 批准号:
10609083 - 财政年份:2022
- 资助金额:
$ 34.07万 - 项目类别:
Photoacoustic and epigenetic nerve scaffold for nerve regeneration
用于神经再生的光声和表观遗传神经支架
- 批准号:
10445552 - 财政年份:2022
- 资助金额:
$ 34.07万 - 项目类别:
Citrate Metabonegenic Regulation for the next Generation of Orthopedic Biomaterial Design
下一代骨科生物材料设计的柠檬酸代谢调节
- 批准号:
9899204 - 财政年份:2018
- 资助金额:
$ 34.07万 - 项目类别:
Citrate Metabonegenic Regulation for the next Generation of Orthopedic Biomaterial Design
下一代骨科生物材料设计的柠檬酸代谢调节
- 批准号:
10116283 - 财政年份:2018
- 资助金额:
$ 34.07万 - 项目类别:
Creating Safe Biodegradable Photoluminescent Implant Polymers
创造安全的可生物降解的光致发光植入聚合物
- 批准号:
8298146 - 财政年份:2011
- 资助金额:
$ 34.07万 - 项目类别:
Creating Safe Biodegradable Photoluminescent Implant Polymers
创造安全的可生物降解的光致发光植入聚合物
- 批准号:
8469861 - 财政年份:2011
- 资助金额:
$ 34.07万 - 项目类别:
Creating Safe Biodegradable Photoluminescent Implant Polymers
创造安全的可生物降解的光致发光植入聚合物
- 批准号:
8587405 - 财政年份:2011
- 资助金额:
$ 34.07万 - 项目类别:
Creating Safe Biodegradable Photoluminescent Implant Polymers
创造安全的可生物降解的光致发光植入聚合物
- 批准号:
8678913 - 财政年份:2011
- 资助金额:
$ 34.07万 - 项目类别:
Creating Safe Biodegradable Photoluminescent Implant Polymers
创造安全的可生物降解的光致发光植入聚合物
- 批准号:
8182724 - 财政年份:2011
- 资助金额:
$ 34.07万 - 项目类别:
相似海外基金
Pharmacological targeting of AMP-activated protein kinase for immune cell regulation in Type 1 Diabetes
AMP 激活蛋白激酶对 1 型糖尿病免疫细胞调节的药理学靶向
- 批准号:
2867610 - 财政年份:2023
- 资助金额:
$ 34.07万 - 项目类别:
Studentship
Establishing AMP-activated protein kinase as a regulator of adipose stem cell plasticity and function in health and disease
建立 AMP 激活蛋白激酶作为脂肪干细胞可塑性和健康和疾病功能的调节剂
- 批准号:
BB/W009633/1 - 财政年份:2022
- 资助金额:
$ 34.07万 - 项目类别:
Fellowship
Determining the role of AMP-activated protein kinase in the integration of skeletal muscle metabolism and circadian biology
确定 AMP 激活蛋白激酶在骨骼肌代谢和昼夜节律生物学整合中的作用
- 批准号:
532989-2019 - 财政年份:2021
- 资助金额:
$ 34.07万 - 项目类别:
Postdoctoral Fellowships
Metabolic control of integrin membrane traffic by AMP-activated protein kinase controls cell migration.
AMP 激活的蛋白激酶对整合素膜运输的代谢控制控制着细胞迁移。
- 批准号:
459043 - 财政年份:2021
- 资助金额:
$ 34.07万 - 项目类别:
Studentship Programs
Determining the role of AMP-activated protein kinase in the integration of skeletal muscle metabolism and circadian biology
确定 AMP 激活蛋白激酶在骨骼肌代谢和昼夜节律生物学整合中的作用
- 批准号:
532989-2019 - 财政年份:2020
- 资助金额:
$ 34.07万 - 项目类别:
Postdoctoral Fellowships
The Role of AMP-activated Protein Kinase in GVHD-causing T Cells
AMP 激活的蛋白激酶在引起 GVHD 的 T 细胞中的作用
- 批准号:
10561642 - 财政年份:2019
- 资助金额:
$ 34.07万 - 项目类别:
Determining the role of AMP-activated protein kinase in the integration of skeletal muscle metabolism and circadian biology
确定 AMP 激活蛋白激酶在骨骼肌代谢和昼夜节律生物学整合中的作用
- 批准号:
532989-2019 - 财政年份:2019
- 资助金额:
$ 34.07万 - 项目类别:
Postdoctoral Fellowships
Treating Diabetic Inflammation using AMP-Activated Protein Kinase Activators
使用 AMP 激活的蛋白激酶激活剂治疗糖尿病炎症
- 批准号:
2243045 - 财政年份:2019
- 资助金额:
$ 34.07万 - 项目类别:
Studentship
The Role of AMP-activated Protein Kinase in GVHD-causing T Cells
AMP 激活的蛋白激酶在引起 GVHD 的 T 细胞中的作用
- 批准号:
10359032 - 财政年份:2019
- 资助金额:
$ 34.07万 - 项目类别:
Investigating the therapeutic potential of AMP-activated protein kinase in myotonic dystrophy type 1
研究 AMP 激活蛋白激酶在 1 型强直性肌营养不良中的治疗潜力
- 批准号:
428988 - 财政年份:2019
- 资助金额:
$ 34.07万 - 项目类别:
Studentship Programs