Creating Safe Biodegradable Photoluminescent Implant Polymers

创造安全的可生物降解的光致发光植入聚合物

基本信息

  • 批准号:
    8678913
  • 负责人:
  • 金额:
    $ 30.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-11 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Biodegradable polymers have been fabricated into various biomedical implants such as drug delivery nanoparticles, tissue engineering scaffolds, and orthopedic devices. Using biodegradable polymers as implant materials is beneficial as the implants may be degraded and cleared by the body once their missions are complete, leaving no foreign materials in the body. On the other hand, florescent labeling and imaging have fueled the significant growth of life science and medical research due to the increasing demands on analyzing biomolecules, tracking biological process, and visualizing diseases and therapeutic efficacy. The most common fluorescent imaging agents include organic dyes, fluorescent proteins and quantum dots (QDs). The discovery of fluorescent QDs has revolutionized the field of molecular imaging, especially in oncology applications. However, progress made in the past has not alleviated much on their high cost and intrinsic toxicity concerns which substantially hinder their clinical use in patients. As alternatives, fluorescent dyes suffer from photobleaching and fluorescent proteins are dim in vivo and hard to manipulate. It is noteworthy that all the above imaging agents are just "imaging agents". They cannot act alone as medical implants to serve as drug delivery vehicles or tissue engineering scaffolds. Combining biomedical implants and imaging agents for drug delivery and tissue engineering has been a significant focus of research in the past few years. For drug delivery, a significant challenge is to develop multifunctional nanoparticles that can be used to track drug delivery processes and determine therapeutic efficiency in real-time. Although conjugating organic dyes to, or encapsulating QDs in, biodegradable polymers was considered as a significant step in addressing above challenges, it does not address the concerns on their toxicity and low dye-to- nanoparticle labeling ratio for in vivo applications. For tissue engineering, obtaining in-situ and real-time information on scaffold degradation and tissue infiltration/regeneration in vivo, without traumatically explanting samples or sacrificing animals, is an unaddressed challenge. Using safe biodegradable implant polymers that intrinsically emit detectable fluorescence in vivo would address the above challenges in drug delivery and tissue engineering, as well as open new windows for other biological and biomedical applications based on fluorescence labeling and imaging. However, such biomaterials have not been available. Therefore, the objectives of the proposed work are to 1) discover novel in-vivo safe, wholly-biodegradable, photoluminescent (implant) polymers (BPLP), without conjugating organic dyes or semiconducting quantum dots (QDs), and 2) to develop biodegradable polymeric "QDs" (BPLP nanoparticles) promising for bioimaging, exemplified by in vivo breast cancer targeting and imaging. The expected outcomes of the proposed work are that we will understand the mechanisms behind the unique photoluminescent properties of BPLPs, and that we will establish a methodology to expand the BPLP into different types of biodegradable implant polymers. We will demonstrate their novelty and utility by developing biodegradable BPLP nanoparticles (biodegradable polymeric "QDs") for cell labeling and imaging applications, exemplified by cancer cell targeting and imaging in vivo. The Impacts of this proposal lie in that: 1) Unveiling the intriguing fluorescence mechanism and the methods necessary for the syntheses of biodegradable photoluminescent polymers will significantly advance biomaterials science; and 2) the development of BPLPs should bring a paradigm shift in the use of biodegradable implant biomaterials in a broad range of biological and biomedical fields including biosensing, cellular imaging, drug delivery, tissue engineering, and theranostic nanomedicine.
描述(由申请人提供):可生物降解聚合物已被制造成各种生物医学植入物,如药物输送纳米颗粒、组织工程支架和矫形装置。使用生物可降解聚合物作为植入材料是有益的,因为一旦植入物的任务完成,植入物可以被降解并被身体清除,而不会在体内留下异物。另一方面,由于对分析生物分子、跟踪生物过程、可视化疾病和治疗效果的需求不断增加,荧光标记和成像推动了生命科学和医学研究的显著增长。最常见的荧光显像剂包括有机染料、荧光蛋白和量子点(QDs)。荧光量子点的发现彻底改变了分子成像领域,特别是在肿瘤学应用方面。然而,过去取得的进展并没有减轻它们的高成本和内在毒性问题,这些问题严重阻碍了它们在患者中的临床应用。作为替代品,荧光染料易发生光漂白,荧光蛋白在体内较暗且难以操作。值得注意的是,以上所有显像剂都只是“显像剂”。它们不能单独作为医疗植入物作为药物输送载体或组织工程支架。将生物医学植入物和显像剂结合起来用于药物输送和组织工程是过去几年研究的重要焦点。对于药物传递,一个重大的挑战是开发多功能纳米颗粒,可用于跟踪药物传递过程并实时确定治疗效率。尽管将有机染料偶联到可生物降解聚合物上或将量子点封装在可生物降解聚合物中被认为是解决上述挑战的重要一步,但它并没有解决其毒性和体内应用中染料与纳米颗粒标记率低的问题。对于组织工程来说,在没有创伤性外植样本或牺牲动物的情况下,获得活体支架降解和组织浸润/再生的现场和实时信息,是一个尚未解决的挑战。使用安全可生物降解的植入聚合物,在体内发射可检测的荧光,将解决药物输送和组织工程中的上述挑战,并为基于荧光标记和成像的其他生物和生物医学应用打开新的窗口。然而,这种生物材料还没有得到。因此,本研究的目标是:1)发现新的体内安全、完全可生物降解的光致发光(植入)聚合物(BPLP),不需要偶联有机染料或半导体量子点(QDs); 2)开发有望用于生物成像的可生物降解聚合物“QDs”(BPLP纳米颗粒),例如体内乳腺癌靶向和成像。这项工作的预期结果是,我们将了解BPLP独特的光致发光特性背后的机制,并且我们将建立一种方法,将BPLP扩展到不同类型的可生物降解植入聚合物。我们将通过开发可生物降解的BPLP纳米颗粒(可生物降解聚合物“量子点”)来展示它们的新颖性和实用性,用于细胞标记和成像应用,例如癌细胞靶向和体内成像。该提案的影响在于:1)揭示了令人感兴趣的荧光机制和合成可生物降解的光致发光聚合物所需的方法,将大大推动生物材料科学的发展;2) BPLPs的发展将带来可生物降解植入生物材料在生物传感、细胞成像、药物输送、组织工程和治疗性纳米医学等广泛生物和生物医学领域应用的范式转变。

项目成果

期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Citrate-based fluorescent materials for low-cost chloride sensing in the diagnosis of Cystic Fibrosis.
  • DOI:
    10.1039/c6sc02962k
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Kim JP;Xie Z;Creer M;Liu Z;Yang J
  • 通讯作者:
    Yang J
Citrate-based biphasic scaffolds for the repair of large segmental bone defects.
  • DOI:
    10.1002/jbm.a.35228
  • 发表时间:
    2015-02
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Guo, Ying;Tran, Richard T.;Xie, Denghui;Wang, Yuchen;Nguyen, Dianna Y.;Gerhard, Ethan;Guo, Jinshan;Tang, Jiajun;Zhang, Zhongming;Bai, Xiaochun;Yang, Jian
  • 通讯作者:
    Yang, Jian
Immune Cell-Mediated Biodegradable Theranostic Nanoparticles for Melanoma Targeting and Drug Delivery.
  • DOI:
    10.1002/smll.201603121
  • 发表时间:
    2017-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xie Z;Su Y;Kim GB;Selvi E;Ma C;Aragon-Sanabria V;Hsieh JT;Dong C;Yang J
  • 通讯作者:
    Yang J
Design Strategies and Applications of Biomaterials and Devices for Hernia Repair.
  • DOI:
    10.1016/j.bioactmat.2016.05.002
  • 发表时间:
    2016-09
  • 期刊:
  • 影响因子:
    18.9
  • 作者:
    Kalaba S;Gerhard E;Winder JS;Pauli EM;Haluck RS;Yang J
  • 通讯作者:
    Yang J
Synthesis and characterization of citrate-based fluorescent small molecules and biodegradable polymers.
  • DOI:
    10.1016/j.actbio.2017.01.019
  • 发表时间:
    2017-03-01
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Xie Z;Kim JP;Cai Q;Zhang Y;Guo J;Dhami RS;Li L;Kong B;Su Y;Schug KA;Yang J
  • 通讯作者:
    Yang J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jian Yang其他文献

Jian Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jian Yang', 18)}}的其他基金

Molecular physiology and biophysics of cyclic nucleotide-gated channels
环核苷酸门控通道的分子生理学和生物物理学
  • 批准号:
    10441791
  • 财政年份:
    2022
  • 资助金额:
    $ 30.9万
  • 项目类别:
Molecular physiology and biophysics of cyclic nucleotide-gated channels
环核苷酸门控通道的分子生理学和生物物理学
  • 批准号:
    10609083
  • 财政年份:
    2022
  • 资助金额:
    $ 30.9万
  • 项目类别:
Photoacoustic and epigenetic nerve scaffold for nerve regeneration
用于神经再生的光声和表观遗传神经支架
  • 批准号:
    10445552
  • 财政年份:
    2022
  • 资助金额:
    $ 30.9万
  • 项目类别:
Citrate Metabonegenic Regulation for the next Generation of Orthopedic Biomaterial Design
下一代骨科生物材料设计的柠檬酸代谢调节
  • 批准号:
    10364767
  • 财政年份:
    2018
  • 资助金额:
    $ 30.9万
  • 项目类别:
Citrate Metabonegenic Regulation for the next Generation of Orthopedic Biomaterial Design
下一代骨科生物材料设计的柠檬酸代谢调节
  • 批准号:
    9899204
  • 财政年份:
    2018
  • 资助金额:
    $ 30.9万
  • 项目类别:
Citrate Metabonegenic Regulation for the next Generation of Orthopedic Biomaterial Design
下一代骨科生物材料设计的柠檬酸代谢调节
  • 批准号:
    10116283
  • 财政年份:
    2018
  • 资助金额:
    $ 30.9万
  • 项目类别:
Creating Safe Biodegradable Photoluminescent Implant Polymers
创造安全的可生物降解的光致发光植入聚合物
  • 批准号:
    8298146
  • 财政年份:
    2011
  • 资助金额:
    $ 30.9万
  • 项目类别:
Creating Safe Biodegradable Photoluminescent Implant Polymers
创造安全的可生物降解的光致发光植入聚合物
  • 批准号:
    8469861
  • 财政年份:
    2011
  • 资助金额:
    $ 30.9万
  • 项目类别:
Creating Safe Biodegradable Photoluminescent Implant Polymers
创造安全的可生物降解的光致发光植入聚合物
  • 批准号:
    8587405
  • 财政年份:
    2011
  • 资助金额:
    $ 30.9万
  • 项目类别:
Creating Safe Biodegradable Photoluminescent Implant Polymers
创造安全的可生物降解的光致发光植入聚合物
  • 批准号:
    8182724
  • 财政年份:
    2011
  • 资助金额:
    $ 30.9万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 30.9万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 30.9万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.9万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了