Uncovering the mechanism and role of a widespread anti-CRISPR-Cas9 protein
揭示广泛存在的抗 CRISPR-Cas9 蛋白的机制和作用
基本信息
- 批准号:10365999
- 负责人:
- 金额:$ 33.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-09 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:BacteriaBacterial GenesBacteriophagesBindingBiochemicalBiogenesisBioinformaticsBiologicalBiological AssayBiologyCRISPR/Cas technologyCellsClustered Regularly Interspaced Short Palindromic RepeatsDataElementsEvolutionFirmicutesGenesGeneticGenetic MarkersGenomeGenomicsGoalsGram-Positive BacteriaGrowthGuide RNAHelix-Turn-Helix MotifsHomologous GeneImmuneImmune systemImmunityLactobacillusLightListeria monocytogenesLysogenyLyticMethodsMicrobeMolecularNucleic Acid BindingNucleic AcidsOperonOrganismPathway interactionsPhysiologicalPhysiologyProphagesProtein FamilyProteinsRNAReagentRegulationRoleSpecificitySumSystemTestingTranscriptVirusVirus DiseasesWorkarms racedesignfitnessgene discoverygenetic regulatory proteingenomic biomarkerguided inquiryimmune functionin vivoinhibitorlytic replicationmicroorganismnovelnovel markernucleasepathogenpreventpromoterresponsetranscriptome sequencing
项目摘要
PROJECT SUMMARY/ABSTRACT
Bacteria prevent viral infection by deploying CRISPR-Cas immunity, which features RNA-guided nucleases that
recognize and cleave phage genomes with sequence specificity. Our understanding of the mechanisms and
applications for these systems has advanced dramatically in recent years, however, our appreciation for the
natural physiology of CRISPR-Cas interactions with phages is lacking. This proposal focuses on the discovery,
characterization and evolution of the phage counter-response to CRISPR-Cas immunity. My lab has recently
discovered “anti-CRISPR” proteins produced by Listeria monocytogenes phages that inhibit CRISPR-Cas9
function through distinct mechanisms. While three of the proteins (AcrIIA2-4) interact directly with the Cas9 RNA-
guided nuclease, AcrIIA1 functions in the absence of such an interaction. Moreover, acrIIA1 is the most
widespread anti-CRISPR gene discovered to date, encoded by phages, non-phage mobile elements, and core
genomes across the Firmicutes phylum. Preliminary evidence suggests that this protein represses the
accumulation of Cas9 protein in the cell, suggesting a regulatory role towards biogenesis inhibition. No such
regulatory protein has been previously described. AcrIIA1 possesses a predicted helix-turn-helix domain, which
suggests a mechanism that may involve nucleic acid interactions. Interestingly, phages that infect L.
monocytogenes do not possess just one anti-CRISPR gene, they often encode AcrIIA1, in addition to at least
one of the inhibitor proteins (AcrIIA2-4). The functional importance of this apparent `multi-pronged' CRISPR-
Cas9 attack is unknown. First, we will design isogenic phages to determine the contribution of multiple anti-
CRISPRs to phage fitness, during lytic replication and lysogeny (phage integration). Second, we will determine
whether AcrIIA1 makes direct interactions with any CRISPR-Cas9 promoter elements or RNA transcripts to
interrogate its mechanism of action. Unbiased interaction profiling will also be conducted to fully capture AcrIIA1
biology. Lastly, given how widespread acrIIA1 homologs are, we will conduct comprehensive bioinformatics to
determine the evolutionary origins of this protein superfamily and identify essential residues for function.
Preliminary analyses have revealed an acrIIA1 homolog is found adjacent to a CRISPR-Cas9 operon in
Lactobacillus, suggesting a functional linkage between acrIIA1 and endogenous CRISPR-Cas9 regulation.
Additionally, we will utilize acrIIA1 as an anti-CRISPR marker to facilitate new anti-CRISPR discovery. This will
contribute to our ultimate goal; identifying all CRISPR-Cas systems that are inhibited by phage anti-CRISPR
systems. Additionally, CRISPR-Cas9 inhibitors provide new contributions to the gene editing toolbox, as a
means to enact post-translational inactivation and limit off-target gene editing. Taken together, I propose that
AcrIIA1 is a widespread CRISPR-Cas regulatory protein that bacteria and phage possess. We will determine its
role, mechanism, and diverse reach, which will vastly expand our understanding of CRISPR-Cas biology, phage-
host interactions, and contribute new reagents for CRISPR-Cas applications.
项目总结/文摘
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Genetic Manipulation of a CAST of Characters in a Microbial Community.
微生物群落中一系列特征的遗传操作。
- DOI:10.1089/crispr.2022.29142.dmo
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Mozumdar,Deepto;Csörgő,Bálint;Bondy-Denomy,Joseph
- 通讯作者:Bondy-Denomy,Joseph
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Bondy-Denomy其他文献
Joseph Bondy-Denomy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Bondy-Denomy', 18)}}的其他基金
Investigating the mechanisms that make jumbophages impervious to bacterial immune systems
研究使巨噬细胞不受细菌免疫系统影响的机制
- 批准号:
10503219 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
Identifying the mechanism of bacteriophage detection by cyclic-oligonucleotide signaling systems
通过环状寡核苷酸信号系统识别噬菌体检测机制
- 批准号:
10432910 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
Identifying the mechanism of bacteriophage detection by cyclic-oligonucleotide signaling systems
通过环状寡核苷酸信号系统识别噬菌体检测机制
- 批准号:
10550270 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
Genetic and Proteomic Approaches to Reveal Bacterial Vulnerabilities to Phage Predation
揭示细菌对噬菌体捕食的脆弱性的遗传和蛋白质组学方法
- 批准号:
10625434 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
Investigating the mechanisms that make jumbophages impervious to bacterial immune systems
研究使巨噬细胞不受细菌免疫系统影响的机制
- 批准号:
10663359 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
Uncovering the mechanism and role of a widespread anti-CRISPR-Cas9 protein
揭示广泛存在的抗 CRISPR-Cas9 蛋白的机制和作用
- 批准号:
9901545 - 财政年份:2018
- 资助金额:
$ 33.92万 - 项目类别:
Discovering New Roles for CRISPR-Cas in Bacterial Pathogenesis
发现 CRISPR-Cas 在细菌发病机制中的新作用
- 批准号:
9349378 - 财政年份:2015
- 资助金额:
$ 33.92万 - 项目类别:
Discovering New Roles for CRISPR-Cas in Bacterial Pathogenesis
发现 CRISPR-Cas 在细菌发病机制中的新作用
- 批准号:
9150686 - 财政年份:2015
- 资助金额:
$ 33.92万 - 项目类别:
相似海外基金
Systematically assessing the cancer-modulating capabilities of viral and bacterial genes for potential therapeutic strategies
系统评估病毒和细菌基因的癌症调节能力,以制定潜在的治疗策略
- 批准号:
491113 - 财政年份:2023
- 资助金额:
$ 33.92万 - 项目类别:
Fellowship Programs
Identification of bacterial genes involved in per- and poly-fluoroalkyl substance metabolism
鉴定参与全氟烷基和多氟烷基物质代谢的细菌基因
- 批准号:
572251-2022 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
University Undergraduate Student Research Awards
Bacterial genes to function: Determining the roles of the gut microbiome in preterm infant health and disease
发挥功能的细菌基因:确定肠道微生物组在早产儿健康和疾病中的作用
- 批准号:
2751202 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
Studentship
CellGraph: bioimaging software to rapidly identify bacterial genes responsible for modifications to host cell organelle morphology
CellGraph:生物成像软件,可快速识别负责宿主细胞细胞器形态修饰的细菌基因
- 批准号:
10257615 - 财政年份:2021
- 资助金额:
$ 33.92万 - 项目类别:
CellGraph: bioimaging software to rapidly identify bacterial genes responsible for modifications to host cell organelle morphology
CellGraph:生物成像软件,可快速识别负责宿主细胞细胞器形态修饰的细菌基因
- 批准号:
10450878 - 财政年份:2021
- 资助金额:
$ 33.92万 - 项目类别:
How long do bacterial genes for antibiotic resistance persist in agricultural dugouts?
细菌的抗生素抗性基因在农业防空洞中能持续多久?
- 批准号:
563165-2021 - 财政年份:2021
- 资助金额:
$ 33.92万 - 项目类别:
University Undergraduate Student Research Awards
Why do bacterial genes for antibiotic resistance persist in natural environments?
为什么细菌的抗生素抗性基因在自然环境中持续存在?
- 批准号:
551114-2020 - 财政年份:2020
- 资助金额:
$ 33.92万 - 项目类别:
University Undergraduate Student Research Awards
Identification of Bacterial Genes that Disrupt Host Proteostasis
鉴定破坏宿主蛋白质稳态的细菌基因
- 批准号:
10041813 - 财政年份:2020
- 资助金额:
$ 33.92万 - 项目类别:
Identification of Bacterial Genes that Disrupt Host Proteostasis
鉴定破坏宿主蛋白质稳态的细菌基因
- 批准号:
10224099 - 财政年份:2020
- 资助金额:
$ 33.92万 - 项目类别:
Establishment of rapid detection method for oral bacterial genes associated with systemic diseases
全身性疾病相关口腔细菌基因快速检测方法的建立
- 批准号:
20K09940 - 财政年份:2020
- 资助金额:
$ 33.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)