Identifying the mechanism of bacteriophage detection by cyclic-oligonucleotide signaling systems
通过环状寡核苷酸信号系统识别噬菌体检测机制
基本信息
- 批准号:10432910
- 负责人:
- 金额:$ 24.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-14 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:Adaptor Signaling ProteinAmino AcidsBackBacteriaBacterial ProteinsBacteriophagesBindingBiochemicalBiological AssayBiological ModelsCandidate Disease GeneCatalytic DomainCell DeathCellsClustered Regularly Interspaced Short Palindromic RepeatsCyclic GMPDNA BindingDataDetectionEffector CellEngineeringEnzymesEukaryotaEvolutionFutureGene DeletionGenesGeneticGenetic ScreeningGenomeGenomic DNAHumanImmuneImmune systemImmunityIn VitroInfectionInnate Immune ResponseInterferon Type IInterferonsLengthLibrariesMaintenanceMammalian CellMammalsMeasurementModificationMutagenesisMutationNatural ResistanceNucleic AcidsNucleosomesNucleotidesOligonucleotidesOperonOutcomePathway interactionsPeriodicityPhasePhospholipasePost-Translational Protein ProcessingProductionProkaryotic CellsProteinsPseudomonas aeruginosaRecording of previous eventsRepressionResistanceResolutionRoleSignal TransductionSignaling MoleculeStimulator of Interferon GenesSystemTerminator CodonToxic effectViralVirusWorkZincantiviral immunitybasecell killingds-DNAexperimental studygenome-widehuman pathogenimmune functionin vivoinhibitorinterestmutantnucleotidyltransferaseopportunistic pathogenoverexpressionpressurepreventreconstitutiontoolviral DNA
项目摘要
Project Summary
Bacteriophages (phages) are viruses that infect and kill bacteria. These viral predators have provided the
selective pressure to drive the evolution of numerous anti-phage immune pathways such as restriction-
modification and CRISPR-Cas systems. A recent surge in the discovery of new anti-phage immune systems has
uncovered an incredible diversity of defensive mechanisms across prokaryotes. Strikingly, many of these
systems appear to be homologous to mammalian anti-viral immune pathways, suggesting that some human
innate immune responses may have originated as anti-phage systems. The immune system of interest in this
proposal first arose in bacteria and is now widely studied in mammals as cGAS-STING. In mammals, the cGAS
enzyme directly binds to cytoplasmic double-stranded DNA (dsDNA) and triggers the production of cyclic GMP-
AMP (cGAMP) molecules that bind to the protein STING to ultimately stimulate interferon genes. cGAS is
normally held in the off state through a wide array of inhibitory post-translational modifications, direct protein
interactions, nucleosome tethering, and phase separation. However, the regulatory mechanisms that inhibit
or activate the homologous system in bacteria, called CBASS, remain unknown. CBASS (cyclic
oligonucleotide-based anti-phage signaling systems) systems are currently thought to drive an abortive infection
outcome, in which the production of one of many potential cyclic oligonucleotides (c-oligos) activates a co-
encoded toxic effector protein and induces cell death. Given this cell death outcome of activated CBASS, we
hypothesize that tight regulatory mechanisms must keep it off, and these mechanisms must be rapidly reversed
during phage infection to turn CBASS on. Biochemical assays have shown that the cGAS-like enzymes in
bacteria, called CD-NTases, constitutively produce c-oligos in vitro and structural work shows that CD-NTases
are in an activated state with the catalytic site permanently competent for substrate nucleotide binding.
Paradoxically, the overexpression of the CD-NTase and effector in bacteria is not toxic in the absence of phage,
confirming that the cell has at least one mechanism to repress or inhibit function. For our studies, we will use the
first described native model system for CBASS anti-phage function, established in Pseudomonas aeruginosa, in
our group. We will first conduct unbiased and targeted genetic screens to identify endogenous CBASS inhibitors
or repressors that allow maintenance and prevent self-toxicity by CBASS. In conjunction, we will identify the
phage component(s) that triggers CBASS by isolating phages that acquire mutations that enable CBASS escape.
Genetics and biochemical experiments will be used to validate the trigger. Surprisingly, preliminary experiments
with this approach revealed the first phage encoded anti-CBASS protein, which will be mechanistically
characterized during this study. Together, these experiments will provide a mechanistic understanding for how
CBASS immune systems interface with, and inhibit, phage replication.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Bondy-Denomy其他文献
Joseph Bondy-Denomy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Bondy-Denomy', 18)}}的其他基金
Investigating the mechanisms that make jumbophages impervious to bacterial immune systems
研究使巨噬细胞不受细菌免疫系统影响的机制
- 批准号:
10503219 - 财政年份:2022
- 资助金额:
$ 24.23万 - 项目类别:
Identifying the mechanism of bacteriophage detection by cyclic-oligonucleotide signaling systems
通过环状寡核苷酸信号系统识别噬菌体检测机制
- 批准号:
10550270 - 财政年份:2022
- 资助金额:
$ 24.23万 - 项目类别:
Genetic and Proteomic Approaches to Reveal Bacterial Vulnerabilities to Phage Predation
揭示细菌对噬菌体捕食的脆弱性的遗传和蛋白质组学方法
- 批准号:
10625434 - 财政年份:2022
- 资助金额:
$ 24.23万 - 项目类别:
Investigating the mechanisms that make jumbophages impervious to bacterial immune systems
研究使巨噬细胞不受细菌免疫系统影响的机制
- 批准号:
10663359 - 财政年份:2022
- 资助金额:
$ 24.23万 - 项目类别:
Uncovering the mechanism and role of a widespread anti-CRISPR-Cas9 protein
揭示广泛存在的抗 CRISPR-Cas9 蛋白的机制和作用
- 批准号:
10365999 - 财政年份:2018
- 资助金额:
$ 24.23万 - 项目类别:
Uncovering the mechanism and role of a widespread anti-CRISPR-Cas9 protein
揭示广泛存在的抗 CRISPR-Cas9 蛋白的机制和作用
- 批准号:
9901545 - 财政年份:2018
- 资助金额:
$ 24.23万 - 项目类别:
Discovering New Roles for CRISPR-Cas in Bacterial Pathogenesis
发现 CRISPR-Cas 在细菌发病机制中的新作用
- 批准号:
9349378 - 财政年份:2015
- 资助金额:
$ 24.23万 - 项目类别:
Discovering New Roles for CRISPR-Cas in Bacterial Pathogenesis
发现 CRISPR-Cas 在细菌发病机制中的新作用
- 批准号:
9150686 - 财政年份:2015
- 资助金额:
$ 24.23万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 24.23万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 24.23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 24.23万 - 项目类别:
Continuing Grant
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 24.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 24.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 24.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 24.23万 - 项目类别:
Studentship
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 24.23万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 24.23万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 24.23万 - 项目类别:














{{item.name}}会员




