Regulation of Fetal Skeletal Muscle Growth in IUGR
IUGR 胎儿骨骼肌生长的调节
基本信息
- 批准号:10364862
- 负责人:
- 金额:$ 54.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAffectAlanineAmino AcidsAnimalsBody CompositionBody WeightBrainBranched-Chain Amino AcidsCatabolismCellsCitric Acid CycleDataDefectDevelopmentDiabetes MellitusDietary InterventionEpidemicExposure toFatty acid glycerol estersFetal GrowthFetal Growth RetardationFetal SheepFetusGluconeogenesisGlutamineGoalsGrowthGrowth FactorHarvestHindlimbHumanHypertrophyIncidenceIncubatedInfusion proceduresInsulinInsulin ResistanceIntramuscularIsoleucineKnowledgeLabelLeucineLongevityMetabolic DiseasesMetabolismMolecularMolecular TargetMuscleMuscle CellsMuscle FibersMuscle ProteinsNa(+)-K(+)-Exchanging ATPaseNutrientNutritionalObesityOrganPlacental InsufficiencyPregnancyProductionProtein BiosynthesisProteinsProteomicsRegulationResearchRiskRoleSarcolemmaSerumSignal TransductionSkeletal MuscleStarvationTechniquesTestingTimeValineWeightamino acid metabolismbasebranched-chain-amino-acid transaminasedesigndiabetes riskdisorder riskfallsfetalimprovedinnovationmetabolomicsmuscle formneonatenovel strategiesobesity riskperinatal periodpreventprogramsprotein expressionreduced muscle massresponserestorationsarcopeniasarcopenic obesitysheep modelskeletal muscle growthsolutetargeted treatmentuptake
项目摘要
PROJECT ABSTRACT
Our goal is to improve skeletal muscle growth and body composition in the fetus, neonate, and adult affected by
intrauterine growth restriction (IUGR). Fetal skeletal muscle growth is profoundly limited as a result of placental
insufficiency and leads to lifelong reductions in muscle mass (sarcopenia) and metabolic disease risk, making
restoration of muscle mass during the perinatal period a high priority. During the previous project period, we
found multiple defects in fetal skeletal muscle growth in a highly relevant sheep model of IUGR, including lower
muscle protein synthesis (MPS) rates, lower muscle mass relative to brain and whole-body weights, smaller
myofibers with lower myonuclear number, and fewer total myofibers compared to normally-growing controls.
Based on our preliminary data, we have identified adaptations within branched-chain amino acid (BCAA)
catabolism that result in lower MPS in the IUGR fetus. Weight-specific BCAA uptake rates by the IUGR hindlimb
are reduced despite normal circulating BCAA concentrations, the likely result of lower Na+K+-ATPase activity to
drive BCAA into the myocyte. Branched-chain aminotransferase (BCAT) protein expression is higher, which is
the first step in BCAA catabolism and results in de novo alanine and glutamine synthesis to support
gluconeogenesis, anapleurosis, and energy production. Despite our recent progress, however, critical
knowledge gaps remain regarding the mechanisms by which placental insufficiency programs the IUGR myocyte
to reduce BCAA uptake and increase BCAA catabolism. Furthermore, it is not known when during an IUGR
gestation these mechanisms become intrinsic to the myocyte or how they may be prevented and/or reversed to
improve muscle growth. We have assembled a research team of highly qualified experts in metabolism and
state-of-the-art metabolomic and proteomic techniques to fill these knowledge gaps. We will test the hypothesis
that lower Na+K+-ATPase and higher BCAT activity are intrinsic to the fetal myocyte to increase BCAA catabolism
and limit MPS by the end of an IUGR gestation, but that a targeted therapy (L-alanyl-L-glutamine, AG) delivered
during a critical developmental window will ameliorate these defects to increase MPS. In Aim 1, we will determine
the cellular mechanisms that reduce MPS and test the extent to which these adaptations are intrinsic to the
myocyte and/or induced by extrinsic circulating factors the IUGR fetus. In Aim 2, we will address when MPS
becomes limited during the course of an IUGR pregnancy. This information is critical to inform the timing of
therapies during pregnancy aimed to increase fetal growth. In Aim 3, we will test the capacity of an AG infusion
into the IUGR fetus to activate Na+K+-ATPase, stimulate BCAA uptake, and reverse BCAA catabolism to increase
intramuscular BCAA for MPS. In summary, this proposal will address gaps in knowledge about how BCAA
utilization is regulated in the fetus exposed to placental insufficiency when myofibers are forming, myonuclei are
accreting, and hypertrophy rates are some of the highest during the lifespan. These studies are a necessary
prerequisite for designing novel approaches to restore muscle growth.
项目摘要
我们的目标是改善胎儿、新生儿和成人的骨骼肌生长和身体组成。
宫内生长受限(IUGR)。胎盘严重限制了胎儿骨骼肌的生长
并导致终生肌肉质量减少(骨骼肌减少)和代谢性疾病风险,使
围产期恢复肌肉质量是当务之急。在之前的项目期间,我们
在高度相关的IUGR绵羊模型中发现胎儿骨骼肌生长存在多种缺陷,包括
肌肉蛋白质合成率(MPS),相对于大脑和全身重量较低的肌肉质量,较小
与正常生长的对照组相比,肌纤维具有较少的肌核数量和较少的总肌纤维。
基于我们的初步数据,我们已经确定了支链氨基酸(BCAA)中的适应性
导致IUGR胎儿MPS降低的分解代谢。IUGR后肢特定体重的支链氨基酸摄取率
尽管循环中支链氨基酸浓度正常,但仍呈下降趋势,这可能是由于Na+K+-ATPase活性降低
驱使支链氨基酸进入心肌细胞。支链氨基转移酶(BCAT)蛋白表达较高,这是
支链氨基酸分解代谢的第一步,导致从头合成丙氨酸和谷氨酰胺以支持
糖异生、胸膜后垂和能量生产。尽管我们最近取得了进展,但关键是
关于胎盘功能不全编程IUGR肌细胞的机制仍然存在知识空白
减少支链氨基酸摄取,增加支链氨基酸分解代谢。此外,在IUGR期间,还不知道何时
这些机制成为心肌细胞固有的机制,或者如何防止和/或逆转这些机制
促进肌肉生长。我们已经组建了一支由高素质的新陈代谢和
最先进的新陈代谢和蛋白质组学技术来填补这些知识空白。我们将检验这一假设
较低的Na+K+-ATPase和较高的BCAT活性是胎儿心肌细胞增加支链氨基酸分解代谢的内在原因
并在IUGR妊娠结束时限制MPS,但靶向治疗(L-丙氨酰-L-谷氨酰胺,AG)交付
在关键的发育窗口期将改善这些缺陷以增加MPS。在目标1中,我们将确定
降低MPS并测试这些适应的内在程度的细胞机制
肌细胞和/或外源性循环因子诱导胎儿宫内发育迟缓。在目标2中,我们将讨论国会议员
在IUGR怀孕期间变得有限。这一信息对于确定
怀孕期间的治疗旨在促进胎儿生长。在目标3中,我们将测试AG输液的容量
进入IUGR胎儿体内激活Na+K+-ATPase,刺激BCAA摄取,逆转BCAA分解代谢增加
MPS的肌肉内支链动脉。总而言之,这项建议将解决关于BCAA如何
当肌纤维形成时,暴露于胎盘功能不全的胎儿的利用受到调节,肌核是
附着率和肥大率是寿命中最高的。这些研究是必要的
设计恢复肌肉生长的新方法的先决条件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laura Davidson Brown其他文献
Laura Davidson Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laura Davidson Brown', 18)}}的其他基金
Regulation of fetal skeletal muscle growth in IUGR
IUGR 胎儿骨骼肌生长的调节
- 批准号:
9212009 - 财政年份:2015
- 资助金额:
$ 54.3万 - 项目类别:
Regulation of Fetal Skeletal Muscle Growth in IUGR
IUGR 胎儿骨骼肌生长的调节
- 批准号:
10589783 - 财政年份:2015
- 资助金额:
$ 54.3万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 54.3万 - 项目类别:
Research Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 54.3万 - 项目类别:
Standard Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 54.3万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 54.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 54.3万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 54.3万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 54.3万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 54.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 54.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 54.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)