A unified quantitative modeling strategy for multiplex assays of variant effect

用于变异效应多重分析的统一定量建模策略

基本信息

  • 批准号:
    10366897
  • 负责人:
  • 金额:
    $ 78.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-15 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY / ABSTRACT A central goal of genomics is to understand the relationship between genotype and phenotype. In recent years, the ability to quantitatively study genotype-phenotype maps has been revolutionized by the development of multiplex assays of variant effect (MAVEs), which measure molecular phenotypes for thousands to millions of genotypic variants in parallel. MAVE is an umbrella term that includes massively parallel reporter assays for studies of DNA or RNA regulatory sequences, as well as deep mutational scanning assays of proteins or structural RNAs. The rapid adoption of MAVE techniques across multiple genomic disciplines has created an acute need for computational methods that can robustly and reproducibly infer quantitative genotype- phenotype (G-P) maps from the large datasets that MAVEs produce. Here we propose a unified conceptual and computational framework for quantitatively modeling G-P maps from MAVE data. This proposal is motivated by our realization that accounting for the noise and nonlinearities that are omnipresent in MAVE experiments requires explicit modeling of both the MAVE measurement process and the G-P map of interest. This joint inference strategy is more computationally demanding than most MAVE analysis methods, but it is feasible using modern deep learning frameworks. Our extensive preliminary data show that this modeling strategy is able to recover high-precision G-P maps even in the presence of major confounding effects, and thus has the potential to benefit MAVE studies in multiple areas of genomics. Aim 1 will develop methods for modeling the measurement processes that arise in diverse MAVE experimental designs. Aim 2 will develop general methods for modeling genetic interactions within G-P maps, and will use these methods in conjunction with new experiments to elucidate the molecular mechanism of a recently approved drug that targets alternative mRNA splicing. Aim 3 will develop methods for inferring G-P maps that reflect biophysical models of gene regulation, including both thermodynamic (i.e., quasi-equilibrium) and kinetic (i.e., non-equilibrium steady-state) models. These methods will then be used, in conjunction with new MAVE experiments, to develop a biophysical model for how a pleiotropic transcription factor regulates gene expression throughout the Escherichia coli genome. Aim 4 will study and develop methods for treating gauge freedoms and sloppy modes in the above classes of models, thereby facilitating the comparison, interpretation, and exploration of inferred G-P maps. All of the computational techniques we develop will be incorporated into a robust and easy- to-use Python package called MAVE-NN. We will benchmark MAVE-NN on a diverse array of MAVE datasets, including published datasets and data generated as part of this project. In all, this work will fill a major need in the analysis of MAVE experiments, yielding a robust, flexible, and scalable computational platform that will help accelerate the use of MAVEs for understanding the effects of human genetic variation at the genomic scale.
项目摘要/摘要 基因组学的一个中心目标是了解基因型和表型之间的关系。近年来, 定量研究基因-表型图谱的能力已经被 变异效应的多重分析(MAVES),它测量数千到数百万个 基因类型变异是平行的。MAVE是一个总括的术语,包括大规模平行的报告分析 DNA或RNA调节序列的研究,以及蛋白质或蛋白质的深度突变扫描分析 结构RNA。MAVE技术在多个基因组学科中的快速采用创造了一个 迫切需要能够稳健和可重复性地推断定量基因的计算方法-- MAVES产生的大数据集的表型(G-P)图。在这里我们提出了一个统一的概念 以及从MAVE数据定量模拟G-P图的计算框架。这项建议是 我们意识到MAVE中无处不在的噪声和非线性 实验需要对MAVE测量过程和感兴趣的G-P图进行显式建模。 这种联合推理策略比大多数MAVE分析方法对计算的要求更高,但它是 使用现代深度学习框架可行。我们广泛的初步数据表明,这个模型 战略能够恢复高精度的G-P图,即使在存在重大混杂效应的情况下,以及 因此有可能有利于基因组学多个领域的MAVE研究。目标1将制定方法,以 对不同MAVE实验设计中出现的测量过程进行建模。目标2将会发展 在G-P图中模拟遗传互作的一般方法,并将结合使用这些方法 用新的实验来阐明最近批准的一种靶向药物的分子机制 另一种信使核糖核酸剪接。目标3将开发用于推断反映生物物理模型的G-P图的方法 基因调控,包括热力学(即准平衡)和动力学(即非平衡 稳态)模型。这些方法随后将与新的MAVE实验结合使用,以 为多效性转录因子如何在整个过程中调节基因表达开发一个生物物理模型 大肠埃希菌基因组。目标4将研究和开发处理量规自由和马虎的方法 模式,从而便于比较、解释和探索 推断出G-P图。我们开发的所有计算技术都将整合到一个强大而简单的- 使用名为MAVE-NN的Python包。我们将在不同的MAVE数据集阵列上对MAVE-NN进行基准测试, 包括发布的数据集和作为此项目的一部分生成的数据。总而言之,这项工作将填补 MAVE实验的分析,产生一个健壮、灵活和可扩展的计算平台,这将有助于 加快利用MAVES在基因组水平上了解人类遗传变异的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JUSTIN B. KINNEY其他文献

JUSTIN B. KINNEY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JUSTIN B. KINNEY', 18)}}的其他基金

A unified quantitative modeling strategy for multiplex assays of variant effect
用于变异效应多重分析的统一定量建模策略
  • 批准号:
    10646167
  • 财政年份:
    2022
  • 资助金额:
    $ 78.79万
  • 项目类别:
Biophysical modeling of cis-regulatory complexes in transcription and splicing using massively parallel reporter assays
使用大规模并行报告分析对转录和剪接中的顺式调控复合物进行生物物理建模
  • 批准号:
    10697342
  • 财政年份:
    2019
  • 资助金额:
    $ 78.79万
  • 项目类别:
Biophysical modeling of cis-regulatory complexes in transcription and splicing using massively parallel reporter assays
使用大规模并行报告分析对转录和剪接中的顺式调控复合物进行生物物理建模
  • 批准号:
    10472049
  • 财政年份:
    2019
  • 资助金额:
    $ 78.79万
  • 项目类别:
Biophysical modeling of cis-regulatory complexes in transcription and splicing using massively parallel reporter assays
使用大规模并行报告分析对转录和剪接中的顺式调控复合物进行生物物理建模
  • 批准号:
    10241981
  • 财政年份:
    2019
  • 资助金额:
    $ 78.79万
  • 项目类别:
Biophysical modeling of cis-regulatory complexes in transcription and splicing using massively parallel reporter assays
使用大规模并行报告分析对转录和剪接中的顺式调控复合物进行生物物理建模
  • 批准号:
    10000956
  • 财政年份:
    2019
  • 资助金额:
    $ 78.79万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 78.79万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 78.79万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 78.79万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 78.79万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 78.79万
  • 项目类别:
    Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 78.79万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 78.79万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 78.79万
  • 项目类别:
    Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 78.79万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 78.79万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了