A unified quantitative modeling strategy for multiplex assays of variant effect
用于变异效应多重分析的统一定量建模策略
基本信息
- 批准号:10366897
- 负责人:
- 金额:$ 78.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-15 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAcuteAddressAdoptedAdoptionArchitectureAreaBenchmarkingBiological AssayBiologyClinicalCommunicable DiseasesComputational TechniqueComputer AnalysisComputing MethodologiesDNADataData SetDefectDevelopmentDimensionsDisciplineDiseaseDrug TargetingEffectivenessEquilibriumEscherichia coliEvolutionExperimental DesignsFailureFreedomGaussian modelGene ExpressionGene Expression RegulationGeneticGenetic ModelsGenetic TranscriptionGenetic VariationGenomeGenomic DNAGenomicsGenotypeGoalsHuman GeneticsJointsKineticsMapsMathematicsMeasurementMeasuresMessenger RNAMethodsModelingModernizationMolecularNatureNeural Network SimulationNoiseOutputPerformancePharmaceutical PreparationsPhenotypeProcessProteinsPublishingPythonsRNARNA SplicingReporterReproducibilityResearchRibonucleic Acid Regulatory SequencesScienceSpinal Muscular AtrophyTechniquesTechnologyThermodynamicsVariantWorkbiophysical modelcomputational platformcomputer frameworkcomputer infrastructuredeep learningdeep neural networkexperimental studyflexibilitygenome-wideinnovationinsightinterestlarge datasetsmRNA Precursormolecular phenotypemultiple datasetsmultiplex assaymutation screeningsmall moleculesuccesstherapy developmenttranscription factor
项目摘要
PROJECT SUMMARY / ABSTRACT
A central goal of genomics is to understand the relationship between genotype and phenotype. In recent years,
the ability to quantitatively study genotype-phenotype maps has been revolutionized by the development of
multiplex assays of variant effect (MAVEs), which measure molecular phenotypes for thousands to millions of
genotypic variants in parallel. MAVE is an umbrella term that includes massively parallel reporter assays for
studies of DNA or RNA regulatory sequences, as well as deep mutational scanning assays of proteins or
structural RNAs. The rapid adoption of MAVE techniques across multiple genomic disciplines has created an
acute need for computational methods that can robustly and reproducibly infer quantitative genotype-
phenotype (G-P) maps from the large datasets that MAVEs produce. Here we propose a unified conceptual
and computational framework for quantitatively modeling G-P maps from MAVE data. This proposal is
motivated by our realization that accounting for the noise and nonlinearities that are omnipresent in MAVE
experiments requires explicit modeling of both the MAVE measurement process and the G-P map of interest.
This joint inference strategy is more computationally demanding than most MAVE analysis methods, but it is
feasible using modern deep learning frameworks. Our extensive preliminary data show that this modeling
strategy is able to recover high-precision G-P maps even in the presence of major confounding effects, and
thus has the potential to benefit MAVE studies in multiple areas of genomics. Aim 1 will develop methods for
modeling the measurement processes that arise in diverse MAVE experimental designs. Aim 2 will develop
general methods for modeling genetic interactions within G-P maps, and will use these methods in conjunction
with new experiments to elucidate the molecular mechanism of a recently approved drug that targets
alternative mRNA splicing. Aim 3 will develop methods for inferring G-P maps that reflect biophysical models
of gene regulation, including both thermodynamic (i.e., quasi-equilibrium) and kinetic (i.e., non-equilibrium
steady-state) models. These methods will then be used, in conjunction with new MAVE experiments, to
develop a biophysical model for how a pleiotropic transcription factor regulates gene expression throughout the
Escherichia coli genome. Aim 4 will study and develop methods for treating gauge freedoms and sloppy
modes in the above classes of models, thereby facilitating the comparison, interpretation, and exploration of
inferred G-P maps. All of the computational techniques we develop will be incorporated into a robust and easy-
to-use Python package called MAVE-NN. We will benchmark MAVE-NN on a diverse array of MAVE datasets,
including published datasets and data generated as part of this project. In all, this work will fill a major need in
the analysis of MAVE experiments, yielding a robust, flexible, and scalable computational platform that will help
accelerate the use of MAVEs for understanding the effects of human genetic variation at the genomic scale.
项目摘要/摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JUSTIN B. KINNEY其他文献
JUSTIN B. KINNEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JUSTIN B. KINNEY', 18)}}的其他基金
A unified quantitative modeling strategy for multiplex assays of variant effect
用于变异效应多重分析的统一定量建模策略
- 批准号:
10646167 - 财政年份:2022
- 资助金额:
$ 78.79万 - 项目类别:
Biophysical modeling of cis-regulatory complexes in transcription and splicing using massively parallel reporter assays
使用大规模并行报告分析对转录和剪接中的顺式调控复合物进行生物物理建模
- 批准号:
10697342 - 财政年份:2019
- 资助金额:
$ 78.79万 - 项目类别:
Biophysical modeling of cis-regulatory complexes in transcription and splicing using massively parallel reporter assays
使用大规模并行报告分析对转录和剪接中的顺式调控复合物进行生物物理建模
- 批准号:
10472049 - 财政年份:2019
- 资助金额:
$ 78.79万 - 项目类别:
Biophysical modeling of cis-regulatory complexes in transcription and splicing using massively parallel reporter assays
使用大规模并行报告分析对转录和剪接中的顺式调控复合物进行生物物理建模
- 批准号:
10241981 - 财政年份:2019
- 资助金额:
$ 78.79万 - 项目类别:
Biophysical modeling of cis-regulatory complexes in transcription and splicing using massively parallel reporter assays
使用大规模并行报告分析对转录和剪接中的顺式调控复合物进行生物物理建模
- 批准号:
10000956 - 财政年份:2019
- 资助金额:
$ 78.79万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 78.79万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 78.79万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 78.79万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 78.79万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 78.79万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 78.79万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 78.79万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 78.79万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 78.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 78.79万 - 项目类别:
Operating Grants














{{item.name}}会员




