Safer lung cancer radiotherapy delivery using novel artificial intelligence methods
使用新颖的人工智能方法更安全地进行肺癌放射治疗
基本信息
- 批准号:10366916
- 负责人:
- 金额:$ 39.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-15 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAnatomyAreaArtificial IntelligenceCancer EtiologyCardiotoxicityCessation of lifeCharacteristicsChestClinicalCombined Modality TherapyComplicationConeDangerousnessData SetDiseaseDoseEnsureEquipmentEsophagusGeometryGoalsHeartImageImmunotherapyLeadLearningLinkLungLung CAT ScanLung NeoplasmsMagnetic Resonance ImagingMalignant neoplasm of lungManualsMedalMediastinumMethodologyMethodsModalityModelingMonitorMorbidity - disease rateNon-Small-Cell Lung CarcinomaNormal tissue morphologyOrganPatient CarePatientsPositioning AttributePrimary NeoplasmProbabilityPublishingPulmonary InflammationRadiationRadiation Dose UnitRadiation OncologistRadiation OncologyRadiation Therapy Oncology GroupRadiation ToxicityRadiation therapyRecurrenceResearchRiskRisk-Benefit AssessmentSafetyScanningShapesSiteSoftware ToolsSourceSurvival RateSystemSystemic TherapyTechnologyTestingThe Cancer Imaging ArchiveTimeTissuesToxic effectTrainingTreatment-related toxicityUncertaintyUnresectableWorkWorkloadacute toxicityautomated segmentationbasecancer radiation therapychemoradiationchemotherapyclinically relevantcohortcone-beam computed tomographydeep learningeffective therapyfeasibility testingimage guided radiation therapyimaging studyimprovedimproved outcomeinnovationlearning strategylymph nodesnovelradiation responsesimulationsoft tissuestandard carestandard of caretooltreatment planningtumor
项目摘要
SUMMARY
Lung cancer is the leading cause of cancer-related deaths in the U.S. Curative radiotherapy + chemotherapy is
the standard of care for patients with inoperable or unresectable disease that has spread beyond the primary
tumor to the lymph nodes. Unfortunately, this treatment approach has a high recurrence of 15%-40% and
advanced treatments including immunotherapy combined with radiation increase toxicity to organs. Spillover
radiation to normal organs at risk (OAR) results from treatment margins to account for uncertainty in localizing
tumors and OARs. Despite being part of standard equipment, information from in-treatment room cone-beam
computed tomography scans (CBCTs) is currently used only in limited ways for patient positioning during
treatment, without simultaneous online localization of the tumor and each OAR. This proposal will use innovative
artificial intelligence (AI) methods, that have been trained from both CT and magnetic resonance imaging (MRI)
studies, to create auto-segmentation tools that can accurately localize the tumor and key OARs online at
treatment setup.
The proposed novel AI methodology is called “Cross-Modality Educed Learning” or CMEDL
(‘c-medal’). The key advantage of CMEDL is that MRI datasets, even from different patients, can be used, to
guide the CT/CBCT network and “learn” to extract features that emphasize the difference between tissue types
and produces accurate segmentations even in areas with little inherent contrast such as the mediastinum.
For
the first time, the clinical utility of what could be called AI-Guided Radiotherapy (AIGRT) segmentation tools will
be systematically studied in relation to their potential impact on treatment margin reduction and normal tissue
toxicity modeling for longitudinally segmented tumor and healthy tissues on CBCTs. Proposed AIGRT tools
would provide increased geometric confidence as well as provide a better basis for an after-delivery estimate of
delivered dose, and treatment toxicity, enabling better risk-benefit assessments for potential treatment
adaptations. Aim 1: Apply CMEDL methodology to develop lung tumor and OAR segmentations on planning
CTs. Aim 2: Extend the CMEDL methodology to longitudinally segment tumors and OARs on weekly CBCTs,
incorporating patient-specific anatomic and shape priors from planning CTs. Aim 3: Determine whether CMEDL
can enable improved (safer) lung cancer radiotherapy dose characteristics by performing automated planning
and delivery simulations, using in-house planning system. Project goal: To develop and rigorously test AIGRT
tools for lung cancer radiotherapy treatments. Potential impact: If successful, these innovative AI tools could be
deployed routinely, enabling (1) smaller margins and less radiotherapy toxicity for patients, including those with
very difficult-to-treat centrally located tumors and (2) providing tools for monitoring the need for plan changes.
These AIGRT tools could potentially be deployed to other disease sites, and once established be made widely
available as a pragmatic, generalizable technology for geometry guidance throughout the radiation treatment.
总结
肺癌是美国癌症相关死亡的主要原因。
不能手术或不能切除的疾病扩散到原发灶以外的患者的标准治疗
转移到淋巴结不幸的是,这种治疗方法具有15%-40%的高复发率,
包括免疫疗法和放射疗法的先进治疗增加了对器官的毒性。溢出
对正常危险器官(OAR)的辐射来自治疗边缘,以解释定位的不确定性
肿瘤和OAR。尽管是标准设备的一部分,但来自治疗室锥形光束的信息
计算机断层摄影扫描(CBCT)目前仅以有限的方式用于患者定位,
治疗,而无需同时在线定位肿瘤和每个OAR。该提案将采用创新的
人工智能(AI)方法,已经从CT和磁共振成像(MRI)训练
研究,以创建自动分割工具,可以准确地定位肿瘤和关键OAR在线
治疗设置。
提出的新AI方法被称为“跨模态教育学习”或CMEDL
('c-medal')。CMEDL的主要优势是MRI数据集,即使来自不同的患者,也可以用于
引导CT/CBCT网络并“学习”提取强调组织类型之间差异的特征
并且即使在诸如纵隔的具有很少固有对比度的区域中也产生精确的分割。
为
第一次,可以称为AI引导放射治疗(AIGRT)分割工具的临床实用性将
系统研究其对治疗切缘减少和正常组织的潜在影响
CBCT上纵向分段肿瘤和健康组织的毒性建模。拟议的AIGRT工具
将提供更高的几何置信度,并为交付后的
递送剂量和治疗毒性,能够更好地评估潜在治疗的风险-获益
适应目的1:应用CMEDL方法开发计划中的肺肿瘤和OAR分割
CT目的2:将CMEDL方法扩展到每周CBCT上的纵向分段肿瘤和OAR,
结合来自规划CT的患者特定解剖和形状先验知识。目标3:确定CMEDL是否
可以通过执行自动规划来实现改善的(更安全的)肺癌放射治疗剂量特性
和交付模拟,使用内部规划系统。项目目标:开发并严格测试AIGRT
肺癌放疗治疗的工具。潜在影响:如果成功,这些创新的人工智能工具可以
常规部署,使(1)患者的切缘更小,放射治疗毒性更低,包括那些
非常难以治疗的中央肿瘤和(2)提供监测计划变更需求的工具。
这些AIGRT工具有可能被部署到其他疾病地点,一旦建立,
可作为一种实用的、可推广的技术,用于整个放射治疗过程中的几何形状引导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreas Rimner其他文献
Andreas Rimner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 39.36万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 39.36万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 39.36万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 39.36万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 39.36万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 39.36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 39.36万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 39.36万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 39.36万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 39.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists