Integrating complementary learning principles in aphasia rehabilitation via adaptive modeling
通过适应性建模将补充学习原则融入失语症康复中
基本信息
- 批准号:10366326
- 负责人:
- 金额:$ 62.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-15 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAftercareAlgorithmsAnomiaAphasiaBackBrain InjuriesClinicalClinical TrialsCombined Modality TherapyComplexComputer softwareComputersDataData SetDevelopmentEquilibriumFrustrationFutureGaussian modelHourIndividualInterventionLanguage DisordersLeadLearningLiteratureMemoryModelingNamesNatureNeuronal PlasticityOutcomeOutcome StudyParticipantPatientsPerformancePersonsPopulationQuality of lifeRandomizedReaction TimeResearchRetrievalScheduleSpeechSpeedStrokeSystemTestingTimeTrainingadaptive learningaphasia rehabilitationbaseclinical practicedesigneffective interventionflexibilityimprovedimproved outcomeindividual patientinnovationinterestneglectnext generationnovelopen sourcepersonalized medicineprocessing speedstandard caretelehealththeoriestreatment research
项目摘要
Aphasia is a language disorder commonly caused by stroke and other acquired brain injuries that affects over
two million people in the US and has a large negative effect on quality of life. Anomia (i.e., word-finding
difficulty) is a primary frustration for people with aphasia, and naming treatments for anomia are both widely
researched and commonly used in clinical practice. For naming treatments to make a meaningful impact on the
lives of people with aphasia, they must produce durable gains in word-finding which generalize beyond the
treatment context. However, most theoretically-motivated naming treatment research fails to address the long-
term retention of trained words and their generalization to connected speech, limiting their clinical impact.
Prevailing learning theory suggests that “desirable difficulty” improves treatment retention and
generalization. The current proposal therefore seeks to improve the durability and context generalization of
computer-based naming treatment by incorporating model-based algorithms to adaptively maintain desirable
difficulty. We will test two distinct models in parallel clinical trials. Our central premise is that these models will
facilitate a balance between what have historically been framed as contrasting learning approaches: errorless
learning vs. effortful retrieval (Study 1) and massed vs. distributed practice (Study 2). Instead, our models will
integrate these approaches by replacing extreme static contrasts with continuous task components which can
be adaptively modified based on ongoing patient performance. Study 1 will adaptively balance effort and
accuracy using speeded naming deadlines based on a model we have developed which characterizes
individuals’ speed-accuracy tradeoffs in picture naming over time. Study 2 will manipulate trial spacing using
an adaptive scheduling and memory decay model built into widely available, open-source flashcard software.
In both studies, we predict that when compared to matched traditional non-adaptive treatment
conditions, our adaptive conditions will produce more successful retention of trained words 3 and 6 months
post-treatment on naming probes (Aims 1a, 2a), and better context generalization to connected speech when
tested on complex scene descriptions containing untrained exemplars of trained words (Aims 1b, 2b). We also
predict that adaptive trial spacing in Study 2 will successfully train many more words than is possible in current
standard care. In addition, data generated in Studies 1 and 2 will be used to develop the next generation of
adaptive timing models (Aims 1c and 2c), spurring future innovations in personalized medicine.
Successful clinical trial outcomes will demonstrate that adaptive computer-based naming treatments provide a
novel way to produce large, durable, and generalizable treatment gains, and positive Study 2 findings could be
immediately implemented in clinical practice at scale using free open-source software. Successful modeling
outcomes will lead to even more effective interventions and lay the groundwork for a transformative research
agenda that could ultimately lead to comprehensive adaptive learning systems for aphasia rehabilitation.
失语症是一种语言障碍,通常由中风和其他后天性脑损伤引起,
美国有200万人,对生活质量有很大的负面影响。失范(即,找词
困难)是失语症患者的主要挫折,命名治疗失名症的方法都广泛存在。
研究和临床实践中常用。对于命名治疗,以产生有意义的影响,
失语症患者的生活,他们必须在单词发现方面产生持久的收益,
治疗背景。然而,大多数理论上的命名治疗研究未能解决长期的-
训练词的术语保留及其对连接语音的概括,限制了其临床影响。
流行的学习理论表明,“理想的难度”提高了治疗的保留率,
一般化因此,目前的建议旨在提高持久性和上下文泛化,
通过结合基于模型的算法以自适应地保持期望的
困难我们将在平行临床试验中测试两种不同的模型。我们的核心前提是,这些模型将
促进历史上被视为对立的学习方法之间的平衡:无误
学习与努力检索(研究1)和集中与分布式实践(研究2)。相反,我们的模型将
通过用连续的任务组成部分取代极端的静态对比来整合这些方法,
基于正在进行的患者表现自适应地修改。研究1将自适应地平衡努力,
准确性使用加速命名的最后期限的基础上,我们已经开发的模型,其特点是
随着时间的推移,个人在图片命名中的速度-准确性权衡。研究2将使用以下方法操纵试验间隔:
自适应调度和内存衰减模型内置于广泛使用的开源闪存卡软件中。
在这两项研究中,我们预测,与匹配的传统非适应性治疗相比,
条件下,我们的适应条件将产生更成功的保留训练的话3和6个月
命名探针的后处理(目标1a,2a),以及当
在复杂场景描述中进行测试,其中包含训练单词的未训练样本(目标1b,2b)。我们也
预测研究2中的自适应试验间距将成功训练比目前更多的单词。
标准护理此外,研究1和2中产生的数据将用于开发下一代
自适应定时模型(目标1c和2c),刺激个性化医疗的未来创新。
成功的临床试验结果将证明,自适应计算机命名治疗提供了一个
一种产生大的、持久的和可推广的治疗收益的新方法,研究2的积极结果可能是
立即在临床实践中使用免费开源软件大规模实施。造模成功
结果将导致更有效的干预措施,并为变革性研究奠定基础
议程,最终可能导致全面的适应性学习系统的失语症康复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Streicher Evans其他文献
William Streicher Evans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Streicher Evans', 18)}}的其他基金
Integrating complementary learning principles in aphasia rehabilitation via adaptive modeling
通过适应性建模将补充学习原则融入失语症康复中
- 批准号:
10573220 - 财政年份:2022
- 资助金额:
$ 62.54万 - 项目类别:
Adapting acceptance and mindfulness-based behavior therapy for stroke survivors with aphasia to improve communication success, post-stroke adaptation, and quality of life
对患有失语症的中风幸存者采用接受和基于正念的行为疗法,以提高沟通成功率、中风后适应和生活质量
- 批准号:
10380602 - 财政年份:2021
- 资助金额:
$ 62.54万 - 项目类别:
Attention and executive control during lexical processing in aphasia
失语症词汇处理过程中的注意力和执行控制
- 批准号:
8594650 - 财政年份:2013
- 资助金额:
$ 62.54万 - 项目类别:
Attention and executive control during lexical processing in aphasia
失语症词汇处理过程中的注意力和执行控制
- 批准号:
8704107 - 财政年份:2013
- 资助金额:
$ 62.54万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 62.54万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 62.54万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 62.54万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 62.54万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 62.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 62.54万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 62.54万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 62.54万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 62.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 62.54万 - 项目类别:
Studentship