Differential artery-vein analysis in OCT angiography for objective classification of diabetic retinopathy

OCT 血管造影中的动静脉差异分析用于糖尿病视网膜病变的客观分类

基本信息

  • 批准号:
    10368040
  • 负责人:
  • 金额:
    $ 35.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-02-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

Abstract: This project aims to establish differential artery-vein analysis in optical coherence tomography angiography (OCTA), and to validate comprehensive OCTA features for automated classification of diabetic retinopathy (DR). Early detection, prompt intervention, and reliable assessment of treatment outcomes are essential to prevent irreversible visual loss from DR. It is known that DR can target arteries and veins differently. Therefore, differential artery-vein analysis can provide better performance of DR detection and classification. However, clinical OCTA instruments lack the capability of artery-vein differentiation. During this project, we propose to use quantitative feature analysis of OCT, which is concurrently captured with OCTA, to guide artery- vein differentiation in OCTA. The first aim is to establish automated artery-vein differentiation in OCTA. In coordination with our recently demonstrated blood vessel tracking technique, OCT intensity/geometry features will be used to guide artery-vein differentiation in OCTA automatically. Differential artery-vein analysis of blood vessel tortuosity (BVT), blood vessel caliber (BVC), blood vessel density (BVD), vessel perimeter index (VPI), vessel branching coefficient (VBC), vessel branching angle (VBA), branching width ratio (BWR), fovea avascular zone area (FAZ-A) and FAZ contour irregularity (FAZ-CI) will be implemented. Key success criterion of the aim 1 study is to demonstrate robust artery-vein differentiation in OCTA, and to establish OCTA features for objective detection and classification of DR. The second aim is to validate automated OCTA classification of DR. We propose to employ ensemble machine learning to integrate multiple classifiers to achieve robust OCTA classification of DR. Key success criterion of the aim 2 study is to identify OCTA features and optimal-feature- combination to detect early DR, and to establish the correlations between the OCTA features and clinical biomarkers. The third aim is to verify OCTA prediction and evaluation of DR treatment. Our preliminary OCTA study of diabetic macular edema (DME) with anti-vascular endothelial growth factor (anti-VEGF) treatment has shown that BVD can serve as a biomarker predictive of visual improvement. During this project, we plan to test differential artery-vein analysis for DME treatment evaluation. Key success criterion of the aim 3 study is to identify artery-vein features to provide robust prediction and evaluation of DME treatment outcomes. As an alternative approach, we propose a fully convolutional neural network (FCNN) for deep machine leaning based artery-vein and DR classification. Early layers in the FCNN will produce simple features, which will be convolved and filtered into deeper layers to produce complex features for artery-vein and DR classification. Further investigation of the relationship between the new features learned through the machine learning process and clinical biomarkers will allow us to optimize the design for better DR classification. Success of this project will pave the way towards using quantitative OCTA features for early DR detection, objective prediction and assessment of treatment outcomes.
摘要:该项目旨在建立光学相干断层扫描中的差分动静脉分析 血管造影 (OCTA),并验证糖尿病自动分类的综合 OCTA 特征 视网膜病变(DR)。早期发现、及时干预和对治疗结果的可靠评估是 对于防止 DR 造成不可逆转的视力丧失至关重要。众所周知,DR 可以以不同的方式针对动脉和静脉。 因此,差分动静脉分析可以提供更好的DR检测和分类性能。 然而,临床OCTA仪器缺乏动静脉区分能力。在这个项目期间,我们 建议使用与 OCTA 同时捕获的 OCT 定量特征分析来引导动脉 OCTA 中的静脉分化。第一个目标是在 OCTA 中建立自动动静脉区分。在 与我们最近展示的血管跟踪技术、OCT 强度/几何特征相协调 将用于自动引导 OCTA 中的动静脉分化。血液的动静脉差异分析 血管迂曲度(BVT)、血管口径(BVC)、血管密度(BVD)、血管周长指数(VPI)、 血管分支系数 (VBC)、血管分支角度 (VBA)、分支宽度比 (BWR)、中央凹无血管 将实施区域区域(FAZ-A)和FAZ轮廓不规则(FAZ-CI)。目标的关键成功标准 1 项研究旨在证明 OCTA 中强大的动静脉分化,并建立客观的 OCTA 特征 DR 的检测和分类。第二个目标是验证 DR 的自动 OCTA 分类。我们 建议采用集成机器学习来集成多个分类器以实现鲁棒的 OCTA DR的分类目标 2 研究的关键成功标准是识别 OCTA 特征和最佳特征 联合检测早期 DR,并建立 OCTA 特征与临床之间的相关性 生物标志物。第三个目标是验证 OCTA 对 DR 治疗的预测和评估。我们初步的 OCTA 使用抗血管内皮生长因子(抗 VEGF)治疗糖尿病性黄斑水肿(DME)的研究已 表明 BVD 可以作为预测视力改善的生物标志物。在这个项目期间,我们计划测试 用于 DME 治疗评估的差分动静脉分析。目标 3 研究的关键成功标准是 识别动静脉特征,为 DME 治疗结果提供可靠的预测和评估。作为一个 另一种方法是,我们提出了一种基于深度机器学习的全卷积神经网络(FCNN) 动静脉和 DR 分类。 FCNN 的早期层将产生简单的特征,这些特征将被卷积 并过滤到更深的层以产生用于动静脉和 DR 分类的复杂特征。更远 研究通过机器学习过程学到的新特征之间的关系 临床生物标志物将使我们能够优化设计以实现更好的 DR 分类。该项目的成功将 为使用定量 OCTA 特征进行早期 DR 检测、客观预测和 评估治疗结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Irene Lim其他文献

Jennifer Irene Lim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennifer Irene Lim', 18)}}的其他基金

Differential artery-vein analysis in OCT angiography for objective classification of diabetic retinopathy
OCT 血管造影中的动静脉差异分析用于糖尿病视网膜病变的客观分类
  • 批准号:
    10680158
  • 财政年份:
    2020
  • 资助金额:
    $ 35.17万
  • 项目类别:
Differential artery-vein analysis in OCT angiography for objective classification of diabetic retinopathy
OCT 血管造影中的动静脉差异分析用于糖尿病视网膜病变的客观分类
  • 批准号:
    10558567
  • 财政年份:
    2020
  • 资助金额:
    $ 35.17万
  • 项目类别:
Differential artery-vein analysis in OCT angiography for objective classification of diabetic retinopathy
OCT 血管造影中的动静脉差异分析用于糖尿病视网膜病变的客观分类
  • 批准号:
    10080731
  • 财政年份:
    2020
  • 资助金额:
    $ 35.17万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了