Transcriptional Regulation of KCNH2

KCNH2 的转录调控

基本信息

  • 批准号:
    10366053
  • 负责人:
  • 金额:
    $ 57.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-03-08 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

Summary Circadian rhythms help to match the optimal function of the cardiovascular system to the daily changes in the environment. Normal cardiovascular rhythms provide a physiological advantage to people. Unfortunately, normal circadian signaling can also unmask a time-of-day pattern in adverse events like heart attack, stroke, and sudden death in patients with underlying cardiovascular disease. Emerging data now show that abnormal or unhealthy daily rhythms can create a negative impact on normal health too. For example shiftwork, which repeatedly causes shifts in endogenous circadian rhythms, is an independent risk factor for cardiovascular disease. In mammals the suprachiasmatic nucleus (SCN) in the brain is the primary circadian pacemaker that helps to entrain endogenous rhythms to the environment. SCN rhythms are synchronized to the environment via light, and its signaling helps to coordinate the molecular rhythms in cells throughout the body. What is new about this application is we determine how repeated changes in light cycle will impact molecular circadian signaling in the heart. Most cells have a molecular clock signaling mechanism that cycles with a periodicity of ~24 hours. We found genetic disruptions in the molecular clock mechanism of heart cells (cardiomyocytes) primarily causes abnormal changes in cardiac electrophysiology by disrupting the regulation of ion channel function. The goal of this application is to determine how repeated shifts in the light cycle impact molecular clock signaling in the mouse heart and its regulation on ion channel function. Aim 1. To identify new mechanisms with which the cardiac molecular clock regulates different ion channels. Aim 2. To determine how repeated changes in light impact molecular clock signaling in the heart and ion channel regulation. This project creates new knowledge at the interface between chronobiology and cardiac electrophysiology.
总结 昼夜节律有助于使心血管系统的最佳功能与心脏的每日变化相匹配。 环境正常的心血管节律为人们提供了生理优势。不幸的是, 正常的昼夜节律信号也可以揭示不良事件如心脏病发作,中风, 和潜在心血管疾病患者的猝死。 新出现的数据表明,不正常或不健康的日常节奏会对正常的生活产生负面影响。 健康也是。例如,轮班工作反复引起内源性昼夜节律的变化, 心血管疾病的独立危险因素。 在哺乳动物中,大脑中的视交叉上核(SCN)是主要的昼夜节律起搏器,有助于 将内源性节律带入环境。SCN节律通过光与环境同步, 它的信号有助于协调全身细胞的分子节奏。关于我们 这个应用是我们确定光周期的重复变化如何影响分子昼夜信号, 心脏 大多数细胞都有一个分子时钟信号机制,周期约为24小时。我们发现 心脏细胞(心肌细胞)分子钟机制的遗传破坏主要导致 通过破坏离子通道功能的调节而引起的心脏电生理学的异常变化。 这个应用程序的目标是确定光周期中的重复变化如何影响分子钟 信号转导及其对离子通道功能的调节。 目标1.确定心脏分子钟调节不同离子通道的新机制。 目标二。为了确定光的重复变化如何影响心脏和离子中的分子钟信号, 渠道监管 这个项目在时间生物学和心脏电生理学之间的界面上创造了新的知识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian P Delisle其他文献

Brian P Delisle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian P Delisle', 18)}}的其他基金

Circadian clock regulation of myocardial ion channel expression and function
心肌离子通道表达和功能的昼夜节律时钟调节
  • 批准号:
    10650247
  • 财政年份:
    2020
  • 资助金额:
    $ 57.1万
  • 项目类别:
Circadian clock regulation of myocardial ion channel expression and function
心肌离子通道表达和功能的昼夜节律时钟调节
  • 批准号:
    10247589
  • 财政年份:
    2020
  • 资助金额:
    $ 57.1万
  • 项目类别:
Circadian clock regulation of myocardial ion channel expression and function
心肌离子通道表达和功能的昼夜节律时钟调节
  • 批准号:
    10413214
  • 财政年份:
    2020
  • 资助金额:
    $ 57.1万
  • 项目类别:
Administrative Supplement -Circadian Clock Regulation of Myocardial Ion Channel Expression and Function
行政补充-心肌离子通道表达和功能的昼夜节律时钟调节
  • 批准号:
    10800220
  • 财政年份:
    2020
  • 资助金额:
    $ 57.1万
  • 项目类别:
Circadian clock regulation of myocardial ion channel expression and function
心肌离子通道表达和功能的昼夜节律时钟调节
  • 批准号:
    10029362
  • 财政年份:
    2020
  • 资助金额:
    $ 57.1万
  • 项目类别:
Transcriptional Regulation of KCNH2
KCNH2 的转录调控
  • 批准号:
    9889985
  • 财政年份:
    2019
  • 资助金额:
    $ 57.1万
  • 项目类别:
Delayed Rectifier K Channel Biogenesis is Unveiled in Models of Long QT Syndrome
长 QT 综合征模型中揭示了延迟整流 K 通道生物发生
  • 批准号:
    7834209
  • 财政年份:
    2009
  • 资助金额:
    $ 57.1万
  • 项目类别:
Delayed Rectifier K Channel Biogenesis is Unveiled in Models of Long QT Syndrome
长 QT 综合征模型中揭示了延迟整流 K 通道生物发生
  • 批准号:
    7612700
  • 财政年份:
    2008
  • 资助金额:
    $ 57.1万
  • 项目类别:
Delayed Rectifier K Channel Biogenesis is Unveiled in Models of Long QT Syndrome
长 QT 综合征模型中揭示了延迟整流 K 通道生物发生
  • 批准号:
    7468128
  • 财政年份:
    2008
  • 资助金额:
    $ 57.1万
  • 项目类别:
Delayed Rectifier K Channel Biogenesis is Unveiled in Models of Long QT Syndrome
长 QT 综合征模型中揭示了延迟整流 K 通道生物发生
  • 批准号:
    7844877
  • 财政年份:
    2008
  • 资助金额:
    $ 57.1万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 57.1万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 57.1万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 57.1万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 57.1万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 57.1万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 57.1万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了