Role of BK Channel in Chronic Kidney Disease
BK 通道在慢性肾脏病中的作用
基本信息
- 批准号:10367944
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-01-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAffectAutomobile DrivingBiopsy SpecimenBlood VesselsCell AgingCell Cycle ArrestCell LineCellsChronic Kidney FailureClinicalClinical TrialsDataDevelopmentDiabetic NephropathyDisease modelEnd stage renal failureEtiologyExcretory functionExperimental ModelsFatty acid glycerol estersFibroblastsFibrosisFocal Segmental GlomerulosclerosisFolic AcidHumanKidneyKidney FailureKnock-outKnockout MiceLiteratureMediatingMembrane MicrodomainsModelingMolecularMusObese MicePathogenesisPathway interactionsPatientsPhasePlayPotassiumPotassium ChannelProfibrotic signalProtein IsoformsPublic HealthRattusReportingRoleSeveritiesSignal PathwayTGF Beta Signaling PathwayTestingTimeTransforming Growth Factor betaTranslatingTubular formationUreteral obstructionVeteransWild Type Mousecytokineinsightinterstitialkidney biopsykidney fibrosislarge-conductance calcium-activated potassium channelsmouse modelnovelpreventrenal epitheliumtherapeutic target
项目摘要
Project Summary
Chronic kidney disease (CKD) affects 26–30 million U.S. adults and remains a major public health problem
(1; 2). Renal fibrosis is the inevitable consequence of almost every type of CKD regardless of underlying
etiology, and leads to progressive renal failure and end-stage of renal disease (ESRD) (1). Thus, preventing
renal fibrosis may in turn prevent progression of CKD and ESRD. While there is compelling literature
suggesting many potential therapeutic targets for treating renal fibrosis, very few have advanced to the initial
phase of clinical trials (3; 4), and none have shown efficacy in the treatment of renal fibrosis (4). Thus, it is
crucial to continue to discover and test novel potential therapeutic targets for renal fibrosis.
Unilateral ureteral obstruction (UUO) is a common and well-validated renal fibrosis experimental model.
Transforming growth factor-beta (TGF-β) isoforms are multifunctional cytokines that play a central role in
driving fibrosis in most, if not all, forms of CKD (5). Big potassium (BK) channels (also called Big-K, Maxi-K or
Slo1 channels) are K+ channels and may be one novel target that plays a major role in renal fibrosis. BK
channels consist of the α-subunit (BKα), which functions as a channel independently, β-subunits (β1-4), and
the γ-subunit (6; 7). A recent study reported that BK channel β1-subunit deficiency exacerbates vascular
fibrosis and remodeling in high-fat fed obesity mice, suggesting that reduced BKα sensitivity and activity
caused by β1 deficiency (8) leads to vascular fibrosis (9). We have compelling preliminary evidence that shows
for the first time that BKα also plays a critical role in renal fibrosis. While BKα knockout (KO) mice were prone
to developing more severe fibrosis after UUO (Figure 1), pre-treatment with the BK channel opener,
BMS191011 (Sigma-Aldrich, SML0866), that can activate BK channels (10), protected mice from developing
renal fibrosis in wild-type (WT) UUO mice (Figure 2) by suppressing TGF-β1 signaling pathway (Figures 3-4).
These data suggest that the BK channel plays an important role in the development of renal fibrosis.
Thus, elucidating the mechanisms underlying the role of BK channel in the pathogenesis of renal fibrosis is of
utmost clinical importance. Our overall hypothesis is that BK channel deficiency is prone to developing
renal fibrosis via activating the TGF-β signaling pathway in renal fibrotic mouse models. In this
application we will propose three specific aims to test our overall hypothesis:
Specific Aim 1: To validate the role of the BK channels in the development of renal fibrosis in
different renal fibrosis mouse models.
Specific Aim 2: To investigate the molecular mechanisms underlying the BK-mediated development
of renal fibrosis.
Specific Aim 3: To translate the experimental findings by examining whether BK expression levels
are correlated with the severity of renal fibrosis in CKD patients.
SA3.1. Determine whether BK expression levels are quantifiably correlated to the severity of renal fibrosis in
kidney biopsy samples from CKD patients with diabetic nephropathy and focal segmental glomerulosclerosis
(FSGS).
Elucidation of the molecular mechanisms underlying the BK-mediated development of renal fibrosis will
provide novel insights into whether BK channels can be utilized as a potential therapeutic target for treating
CKD patients and preventing them from progressing to ESRD.
项目概要
慢性肾病 (CKD) 影响着 26-3000 万美国成年人,并且仍然是一个主要的公共卫生问题
(1;2)。肾纤维化是几乎所有类型 CKD 的不可避免的结果,无论其基础是什么
病因学,并导致进行性肾衰竭和终末期肾病 (ESRD) (1)。因此,防止
肾纤维化可能进而预防 CKD 和 ESRD 的进展。虽然有引人注目的文献
表明治疗肾纤维化有许多潜在的治疗靶点,但很少有进展到最初的治疗靶点
临床试验阶段 (3; 4),但尚未显示出治疗肾纤维化的功效 (4)。因此,它是
对于继续发现和测试肾纤维化的新的潜在治疗靶点至关重要。
单侧输尿管梗阻(UUO)是一种常见且经过充分验证的肾纤维化实验模型。
转化生长因子-β (TGF-β) 同工型是多功能细胞因子,在
在大多数(如果不是全部)形式的 CKD 中导致纤维化 (5)。大钾 (BK) 通道(也称为 Big-K、Maxi-K 或
Slo1 通道)是 K+ 通道,可能是在肾纤维化中起主要作用的一个新靶点。巴克
通道由独立发挥通道功能的 α 亚基 (BKα)、β 亚基 (β1-4) 和
γ-亚基(6;7)。最近的一项研究报告称,BK 通道 β1 亚基缺乏会加剧血管
高脂肪喂养的肥胖小鼠的纤维化和重塑,表明 BKα 敏感性和活性降低
由 β1 缺乏引起的 (8) 会导致血管纤维化 (9)。我们有令人信服的初步证据表明
首次发现 BKα 在肾纤维化中也发挥着关键作用。而 BKα 敲除 (KO) 小鼠则容易
UUO(图 1)、BK 通道开放剂预处理后出现更严重的纤维化,
BMS191011(Sigma-Aldrich,SML0866),可以激活 BK 通道 (10),保护小鼠免于发育
通过抑制 TGF-β1 信号通路(图 3-4)来抑制野生型 (WT) UUO 小鼠的肾纤维化(图 2)。
这些数据表明BK通道在肾纤维化的发展中发挥重要作用。
因此,阐明 BK 通道在肾纤维化发病机制中的作用机制具有重要意义。
极其重要的临床意义。我们的总体假设是 BK 通道缺陷很容易发生
通过激活肾纤维化小鼠模型中的 TGF-β 信号通路来抑制肾纤维化。在这个
在应用程序中,我们将提出三个具体目标来检验我们的总体假设:
具体目标 1:验证 BK 通道在肾纤维化发展中的作用
不同的肾纤维化小鼠模型。
具体目标 2:研究 BK 介导的发育的分子机制
肾纤维化。
具体目标 3:通过检查 BK 表达水平是否正常来转化实验结果
与 CKD 患者肾纤维化的严重程度相关。
SA3.1。确定 BK 表达水平是否与肾纤维化的严重程度存在定量相关性
患有糖尿病肾病和局灶节段性肾小球硬化的 CKD 患者的肾活检样本
(FSGS)。
阐明 BK 介导的肾纤维化发展的分子机制将
提供关于 BK 通道是否可以用作治疗的潜在治疗靶点的新见解
CKD 患者并防止他们进展为 ESRD。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HUI CAI其他文献
HUI CAI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HUI CAI', 18)}}的其他基金
Regulation of Renal Maxi K Channel by WNK Kinase
WNK 激酶对肾 Maxi K 通道的调节
- 批准号:
8245525 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Regulation of Renal Maxi K Channel by WNK Kinase
WNK 激酶对肾 Maxi K 通道的调节
- 批准号:
8598014 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Regulation of Renal Maxi K Channel by WNK Kinase
WNK 激酶对肾 Maxi K 通道的调节
- 批准号:
8413384 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Regulation of Renal BK Channel by WNK Kinase and its Interacting Proteins
WNK 激酶及其相互作用蛋白对肾 BK 通道的调节
- 批准号:
9032313 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Regulation of Renal BK Channel by WNK Kinase and its Interacting Proteins
WNK 激酶及其相互作用蛋白对肾 BK 通道的调节
- 批准号:
9217384 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Sodium Chloride Cotransporter Regulation by WNK Kinase
WNK 激酶调节氯化钠协同转运蛋白
- 批准号:
7996213 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Sodium Chloride Cotransporter Regulation by WNK Kinase
WNK 激酶调节氯化钠协同转运蛋白
- 批准号:
6983057 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Sodium Chloride Cotransporter Regulation by WNK Kinase
WNK 激酶调节氯化钠协同转运蛋白
- 批准号:
7459083 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Sodium Chloride Cotransporter Regulation by WNK Kinase
WNK 激酶调节氯化钠协同转运蛋白
- 批准号:
7409935 - 财政年份:2005
- 资助金额:
-- - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists