Development and Evaluation of Personalized Explainable Machine Learning Models to Predict and Prevent Nocturnal Hypoglycemia in Type 1 Diabetes
开发和评估个性化可解释机器学习模型以预测和预防 1 型糖尿病夜间低血糖
基本信息
- 批准号:10373516
- 负责人:
- 金额:$ 16.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-21 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAdultAffectAlgorithmsBedsBig DataCarbohydratesCellular PhoneCessation of lifeClinicClinical ResearchConsumptionCross-Over StudiesDangerousnessDataData SetDetectionDevelopmentEmergency CareEngineeringEvaluationEventExerciseFiberFrightGlucoseHumanHyperglycemiaHypoglycemiaIndividualInfusion PumpsInjection of therapeutic agentInjectionsInjuryInsulinInsulin-Dependent Diabetes MellitusInterventionLearningMachine LearningMacronutrients NutritionMeasurementMeasuresModelingNutrientOutcome MeasureParticipantPhasePhysical activityPsychological TransferPumpRandomizedRegistriesRiskRunningSeizuresSensitivity and SpecificitySleepSpecificitySymptomsSyndromeSystemTestingTimeTrainingUnconscious StateUpdateWireless Technologybaseblood glucose regulationcohortcomparison interventiondata managementdesigndiabetes managementdiabetes mellitus therapyexperienceglycemic controlhigh riskhypoglycemia unawarenessimprovedintervention effectlarge datasetspersonalized decisionpoor sleeppopulation basedprediction algorithmpredictive modelingpreventprimary outcomerecruitsecondary outcomesensorsensor technologyside effectsimulationsleep qualitysubcutaneoussupport tools
项目摘要
Development and Evaluation of Personalized Explainable Machine Learning Models to Predict and
Prevent Nocturnal Hypoglycemia in Type 1 Diabetes
Project Summary
Hypoglycemia (glucose < 70 mg/dL) remains the limiting factor for achieving optimal glycemic control in type 1
diabetes (T1D), with nocturnal hypoglycemia being particularly dangerous. Nocturnal hypoglycemia may result
in physical injury, poor sleep quality, fear of hypoglycemia, and hypoglycemia unawareness. Severe episodes
can cause seizures and unconsciousness requiring emergency care, and even death (dead in bed syndrome).
While automated insulin delivery (AID) systems have shown benefits in glucose control during the night,
nighttime hypoglycemia still occurs. Moreover, many people with T1D manage their glucose with continuous
subcutaneous infusion pump (CSII) therapy or multiple daily insulin injections (MDI) therapy. Data updated
between 2013 and 2014 from 16,061 individuals with T1D participating in the T1D Exchange clinic registry
showed that approximately 40% participants managed their glucose with MDI. In this project, we propose to
develop and evaluate a personalized decision support tool that collects and analyzes glucose measurements,
insulin, meals, and physical activity data to predict at bedtime the likelihood of overnight hypoglycemia and
recommend a proactive carbohydrate intervention to substantially reduce nocturnal hypoglycemia. In the
engineering development phase of the project, we will use unique datasets of time-matched glucose
management data (i.e., continuous glucose measurements, insulin, meals, and exercise) from pump, closed-
loop and MDI users to extract information about the major contributors to nocturnal hypoglycemia risk and train
a population-based prediction model that will be personalized over time to better capture inter-subject
variability. We will design a bedtime intervention consisting of a bedtime smart snack with variable nutrient
content that can prevent nighttime hypoglycemia. Snacks will vary by macronutrient content and size to
optimize time to peak post-prandial glycemia that will match the timing to predicted episode of hypoglycemia.
We will conduct a randomized cross-over study to evaluate our smartphone-based decision support tool on a
cohort of 20 people with T1D who are MDI users and are at higher risk of experiencing hypoglycemia.
Participants will be randomly assigned to either first use CGM only (control period) followed by a smartphone-
based decision support tool + nocturnal hypoglycemia intervention (intervention period), or vice-versa. The
control and intervention periods will have a duration of three weeks each. We will measure the effect of the
intervention by comparing the percent time in nocturnal hypoglycemia during the control period vs. the
intervention period. We will also retrospectively measure the accuracy of the prediction model in predicting
nocturnal hypoglycemia using data from the control period. We expect that the proposed bedtime intervention
will lead to a significant reduction in time spent in hypoglycemia overnight of at least 50% reduction relative to
baseline.
用于预测和评估个性化可解释机器学习模型的开发和评估
预防1型糖尿病患者夜间低血糖
项目摘要
低血糖(葡萄糖70 mg/dL)仍然是实现1型糖尿病最佳血糖控制的限制因素
糖尿病(T1D),夜间低血糖尤其危险。夜间低血糖可能导致
在身体损伤、睡眠质量差、害怕低血糖、无意识低血糖的情况下。严重发作
可导致癫痫发作和需要紧急护理的昏迷,甚至死亡(卧床死亡综合症)。
虽然自动胰岛素输送(AID)系统在夜间血糖控制方面显示出了好处,
夜间仍会出现低血糖。此外,许多患有T1D的人通过持续的血糖管理
皮下输液泵(CSII)治疗或每日多次胰岛素注射(MDI)治疗。数据已更新
2013至2014年间,16,061名患有T1D的患者参加了T1D交换诊所登记
结果显示,大约40%的参与者使用MDI管理他们的血糖。在这个项目中,我们建议
开发和评估收集和分析血糖测量的个性化决策支持工具,
胰岛素、膳食和体力活动数据可在睡前预测夜间低血糖和
建议采取积极的碳水化合物干预措施,大幅降低夜间低血糖。在
在项目的工程开发阶段,我们将使用独特的时间匹配血糖数据集
来自Pump的管理数据(即连续血糖测量、胰岛素、膳食和锻炼),闭合-
LOOP和MDI用户提取夜间低血糖风险的主要影响因素的信息并进行培训
基于人口的预测模型将随着时间的推移进行个性化,以更好地捕捉主体之间的关系
可变性。我们将设计一种睡前干预,包括一种具有可变营养的睡前智能零食
可以预防夜间低血糖的内容。零食将因常量营养素含量和大小而有所不同
优化餐后血糖达到峰值的时间,使其与预测的低血糖发作的时间相匹配。
我们将进行一项随机交叉研究,以评估我们基于智能手机的决策支持工具
20名患有T1D的患者是MDI使用者,他们经历低血糖的风险更高。
参与者将被随机分配到第一次使用CGM(控制期),然后使用智能手机-
基于决策支持工具+夜间低血糖干预(干预期),反之亦然。这个
控制期和干预期各为期三周。我们将衡量
通过比较控制期与非控制期夜间低血糖发生的百分比时间进行干预
干预期。我们还将回顾衡量预测模型在预测中的准确性
使用来自控制期的数据进行夜间低血糖。我们预计拟议的睡前干预措施
将导致一夜低血糖所花费的时间显著减少至少50%
基线。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clara Marcela Mosquera-Lopez其他文献
Clara Marcela Mosquera-Lopez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clara Marcela Mosquera-Lopez', 18)}}的其他基金
Development and Evaluation of Personalized Explainable Machine Learning Models to Predict and Prevent Nocturnal Hypoglycemia in Type 1 Diabetes
开发和评估个性化可解释机器学习模型以预测和预防 1 型糖尿病夜间低血糖
- 批准号:
10491126 - 财政年份:2021
- 资助金额:
$ 16.26万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 16.26万 - 项目类别:
Research Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 16.26万 - 项目类别:
Standard Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 16.26万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 16.26万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 16.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 16.26万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 16.26万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 16.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 16.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 16.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)