Optimizing Individualized and Adaptive mHealth Interventions via Control Systems Engineering Methods

通过控制系统工程方法优化个性化和适应性移动医疗干预措施

基本信息

  • 批准号:
    10367716
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-14 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Project Summary Our prosed study will address critical gaps in the literature and practice of informed consent in digital health research. We will leverage the existing Digital Health Checklist (DHC) tool by expanding the consent prototype building component to incorporate what is meaningful to research participants. This study involves co-designing a meaningful informed consent prototype with participants to produce and test a digital health consent blueprint to increase capacity for understanding the function of algorithms used in behavioral interventions. These advances in the DHC tool will contribute to the evidence-base to support the process of informing prospective participants about digital health research. This study will leverage an established decision support tool developed for digital health researchers. The DHC was informed through an iterative design process involving behavioral scientists, regulators, IRB members, ethicists, and clinician-researchers and is grounded in accepted principles of research ethics, namely respect for persons, beneficence and justice, and incorporates four orthogonal domains including: (1) Access and Usability, (2) Risks and Benefits, (3) Privacy, and (4) Data Management. Inspired by an effectiveness-implementation design process, we will test and co-design an interactive consent form with prospective research participants. This human centered participatory design approach will expose unique concerns when asked to use a digital technology to gather personal health information. The proposed work will systematically study and actively respond to critical ethical, legal/regulatory and social implications (ELSI) applied to digital health research - specifically our ability to convey accessible study information such that informed consent transpires. This research will directly benefit our parent R01, will contribute to the literature on informed consent and have potential implications for other personalization algorithms for behavior change, such as those used in industry. Co-designing innovative decision support tools that can be used by researchers, algorithm developers, IRBs, and participants will foster shared decision making at the earliest stages of digital health research and algorithm creation.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Hekler其他文献

Eric Hekler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Hekler', 18)}}的其他基金

Control Systems Engineering to Address the Problem of Weight Loss Maintenance: A System Identification Experiment to Model Behavioral & Psychosocial Factors Measured by Ecological Momentary Assessment
解决减肥维持问题的控制系统工程:行为建模的系统识别实验
  • 批准号:
    10749979
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Advanced data analytics training for behavioral and social sciences research
针对行为和社会科学研究的高级数据分析培训
  • 批准号:
    10402911
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
Optimizing Individualized and Adaptive mHealth Interventions via Control Systems Engineering Methods
通过控制系统工程方法优化个性化和适应性移动医疗干预措施
  • 批准号:
    10668422
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
Optimizing Individualized and Adaptive mHealth Interventions via Control Systems Engineering Methods
通过控制系统工程方法优化个性化和适应性移动医疗干预措施
  • 批准号:
    10759023
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
Advanced data analytics training for behavioral and social sciences research
针对行为和社会科学研究的高级数据分析培训
  • 批准号:
    10160959
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
Advanced data analytics training for behavioral and social sciences research
针对行为和社会科学研究的高级数据分析培训
  • 批准号:
    10649605
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
Optimizing Individualized and Adaptive mHealth Interventions via Control Systems Engineering Methods
通过控制系统工程方法优化个性化和适应性移动医疗干预措施
  • 批准号:
    10826070
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
Optimizing Individualized and Adaptive mHealth Interventions via Control Systems Engineering Methods
通过控制系统工程方法优化个性化和适应性移动医疗干预措施
  • 批准号:
    10599617
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
Optimizing Individualized and Adaptive mHealth Interventions via Control Systems Engineering Methods
通过控制系统工程方法优化个性化和适应性移动医疗干预措施
  • 批准号:
    10456317
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
Optimizing Individualized and Adaptive mHealth Interventions via Control Systems Engineering Methods
通过控制系统工程方法优化个性化和适应性移动医疗干预措施
  • 批准号:
    10216204
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了