Ex vivo bioengineering of functional biomimetic airways for treatment of neonatal and pediatric respiratory conditions
用于治疗新生儿和儿童呼吸系统疾病的功能仿生气道离体生物工程
基本信息
- 批准号:10371031
- 负责人:
- 金额:$ 24.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAgeAlginatesAlveolarBiomedical EngineeringBiomimetic MaterialsBiomimeticsBioreactorsBronchopulmonary DysplasiaCell AdhesionCell SurvivalCell physiologyCellsCharacteristicsChildhoodCollaborationsCollagenComplexCongenital AbnormalityCystic FibrosisDimensionsEngineeringEpithelialEpithelial CellsExcisionExtracellular MatrixFormulationFutureGelatinGlycolsGoalsGrowthGrowth FactorHumanHydrogelsImmunologicsJointsKineticsLaboratoriesLungMechanicsMedical ImagingNatural regenerationNeonatalPatientsPhenotypePhysiologicalPlayPolymersPopulationPrintingProcessProductionProteinsPulmonary Cystic FibrosisRecording of previous eventsResolutionSourceStructureStructure of parenchyma of lungTechniquesTechnologyTestingTimeTissuesTracheaWorkairway epitheliumbasebioprintingcell growthcell growth regulationendodermal progenitorexperienceinduced pluripotent stem cellinnovationlarge printlung developmentlung injurynovelpressureprogenitorrepairedrespiratoryscaffoldstemstem cell differentiationstem cell growthstem cells
项目摘要
Project Summary
Ex vivo engineering of functional respiratory tissues continues to be challenging. However, new
bioengineering techniques are developing at a rapid pace. 3D bioprinting of trachea and large airways,
incorporating both cells and biomimetic materials, is increasingly being applied for treatment of neonatal and
pediatric respiratory conditions. Ideally, guided by medical imaging, a patient's own airway and/or alveolar
stem/progenitor cells can be utilized to generate a novel patient-specific 3D-printed construct. However,
biomimetic materials currently utilized in 3D bioprinting fail to recapitulate the complex microenvironment of
the native lung and are not optimal for supporting lung stem/progenitor cell growth, differentiation, and
function. Further, common biomimetic materials utilized do not grow as the patient ages. The objective of
our proposal is to bioengineer a functional airway, through 3D printing technology, that mimics native medium
and large airways in mechanical and compositional complexity. As extracellular matrix (ECM) has been
shown to play an integral part in lung development and the regulation of cellular processes, our hypothesis
is that decellularized ECM is an optimal substrate for 3D bioprinting of airway scaffolds and will promote
growth, differentiation, and function of representative differentiated airway epithelial stem/progenitor cells.
The following aims have been developed to test our hypothesis: Aim 1, mechanical optimization of human
dECM 3D bioprinted airway structures; Aim 2, optimization of cell viability and phenotype in 3D bioprinted
dECM airway structures. The significance of this proposal will be in demonstrating that dECM is an optimal
substrate for not only the support and differentiation of functional airway epithelial cells, but also for the 3D
printing of biomimetic airway tissues. The innovation of this proposal will be the optimization of this material
for use in the production of functional implantable 3D printed neonatal and pediatric airway constructs to treat
respiratory conditions such as Cystic Fibrosis, Bronchopulmonary Dysplasia and lung hypoplasia due to
congenital defects.
项目摘要
功能性呼吸组织的离体工程化仍然具有挑战性。但新
生物工程技术发展迅速,气管和大气道的3D生物打印,
结合细胞和仿生材料,越来越多地被应用于新生儿和
小儿呼吸系统疾病。理想地,通过医学成像引导,患者自身的气道和/或肺泡
干细胞/祖细胞可用于产生新的患者特异性3D打印构建体。然而,在这方面,
目前在3D生物打印中使用的仿生材料未能重现生物打印的复杂微环境。
并且对于支持肺干细胞/祖细胞生长、分化和
功能此外,所使用的普通仿生材料不会随着患者年龄增长而生长。的目标
我们的建议是通过3D打印技术,模拟天然介质,
和大气道的机械和组成复杂性。由于细胞外基质(ECM)已经被
显示在肺发育和细胞过程的调节中起着不可或缺的作用,我们的假设
脱细胞ECM是3D生物打印气道支架的最佳基质,
代表性分化的气道上皮干/祖细胞的生长、分化和功能。
已经开发了以下目标来测试我们的假设:目标1,人体的机械优化
dECM 3D生物打印的气道结构;目的2,在3D生物打印的气道结构中优化细胞活力和表型
dECM气道结构。该建议的意义在于证明dECM是一种最佳方法。
基质不仅用于支持和分化功能性气道上皮细胞,而且用于3D
打印仿生气道组织。本提案的创新之处将是对这种材料的优化
用于生产功能性可植入3D打印的新生儿和儿科气道结构,
呼吸系统疾病,如囊性纤维化、支气管肺发育不良和肺发育不全,
先天性缺陷
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHRISTINE M FINCK其他文献
CHRISTINE M FINCK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHRISTINE M FINCK', 18)}}的其他基金
Immune Evasion in Embryonic Stem Cell-based Tissue Repair and Transplantation.
基于胚胎干细胞的组织修复和移植中的免疫逃避。
- 批准号:
9069044 - 财政年份:2015
- 资助金额:
$ 24.77万 - 项目类别:
Optimal Derivation of Murine Embryonic Distal Airway Stem Cells
小鼠胚胎远端气道干细胞的优化衍生
- 批准号:
8103876 - 财政年份:2010
- 资助金额:
$ 24.77万 - 项目类别:
Optimal Derivation of Murine Embryonic Distal Airway Stem Cells
小鼠胚胎远端气道干细胞的优化衍生
- 批准号:
8486333 - 财政年份:2010
- 资助金额:
$ 24.77万 - 项目类别:
Optimal Derivation of Murine Embryonic Distal Airway Stem Cells
小鼠胚胎远端气道干细胞的优化衍生
- 批准号:
8680325 - 财政年份:2010
- 资助金额:
$ 24.77万 - 项目类别:
Optimal Derivation of Murine Embryonic Distal Airway Stem Cells
小鼠胚胎远端气道干细胞的优化衍生
- 批准号:
7950373 - 财政年份:2010
- 资助金额:
$ 24.77万 - 项目类别:
Optimal Derivation of Murine Embryonic Distal Airway Stem Cells
小鼠胚胎远端气道干细胞的优化衍生
- 批准号:
8289647 - 财政年份:2010
- 资助金额:
$ 24.77万 - 项目类别:
Biotechnology Based Fetal Pulmonary Tissue Engineering
基于生物技术的胎儿肺组织工程
- 批准号:
7140671 - 财政年份:2005
- 资助金额:
$ 24.77万 - 项目类别:
Biotechnology Based Fetal Pulmonary Tissue Engineering
基于生物技术的胎儿肺组织工程
- 批准号:
7036852 - 财政年份:2005
- 资助金额:
$ 24.77万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 24.77万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 24.77万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 24.77万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 24.77万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 24.77万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 24.77万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 24.77万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 24.77万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 24.77万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 24.77万 - 项目类别:
Standard Grant