Quantitative protein network profiling to improve CAR design and efficacy
定量蛋白质网络分析以改进 CAR 设计和功效
基本信息
- 批准号:10374037
- 负责人:
- 金额:$ 48.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffinityAntibodiesAntigen TargetingAntigensAntineoplastic AgentsAutoimmune DiseasesB-Cell LymphomasBindingBioinformaticsBiological MarkersBiomedical EngineeringCD19 geneCD22 geneCD28 geneCancerousCell CommunicationCell Surface ReceptorsCellsChildClinicalClinical TrialsCo-ImmunoprecipitationsCommunitiesCustomDataDevelopmentDiseaseDisease remissionEngineeringEventFc ReceptorGeneticGoalsGrantITAMImmunologyIn VitroIndividualK-562LeadLogicLymphocyteMachine LearningMass Spectrum AnalysisMeasurableMeasurementMeasuresMolecularMonitorNetwork-basedOutcomeOutcome MeasurePathway AnalysisPatient-Focused OutcomesPatientsPerformancePopulationProductionProteinsProteomicsPublishingReceptor SignalingRecording of previous eventsRefractoryRelapseResearch InstituteResearch PersonnelResearch Project GrantsSamplingScienceSignal TransductionSourceT-Cell ActivationT-Cell ReceptorT-LymphocyteTechniquesTechnologyTestingTranslatingVariantViral Vectorautism spectrum disorderbasebiosignaturecancer cellcancer therapycell behaviorcell killingcell typecellular transductionchimeric antigen receptorchimeric antigen receptor T cellsclinical efficacyclinical implementationclinical predictorsclinical translationclinically relevantcomputer infrastructurecytokinecytokine release syndromedensitydesignextracellulargraphical user interfaceimprovedin vivoindividual variationinterestleukemialymphoblastmachine learning algorithmmolecular modelingnano-stringneurochemistryneuropsychiatric disorderneurotoxicitynew technologynovelpersonalized medicinepersonalized predictionsprediction algorithmpredictive markerpredictive testprogramsprotein protein interactionreceptorresearch and developmentresearch clinical testingresponseside effecttranscriptome
项目摘要
PROJECT SUMMARY
This grant is in response to PAR-18-206, Bioengineering Research Grants (BRG). Our goal is to adapt a
cutting-edge proteomic network analysis platform, Quantitative Multiplex co-Immunoprecipitation or QMI,
to chimeric antigen receptor (CAR) T cell signaling. We will then use CAR-QMI to characterize signal
transduction network activation downstream of the CAR, to both understand how the CAR instructs a T cell to
attack and destroy cancerous targets, and to make batch-specific predictions about efficacy and side-effect
profiles of CAR T cell products. CAR T cells are a breakthrough anti-cancer therapy that recently won FDA
approval for relapsed B cell lymphomas. A true “personalized medicine”, CAR T cells are manufactured for
each patient from that patient's own T cells by transducing T cells collected by leukopheresis with a viral vector
encoding a CAR. However, since each batch is unique, some batches perform better than others in terms of
producing remissions and/or deleterious and sometimes fatal side effects including cytokine storms and
neurotoxicity. The goal of this project is to develop a “personalized signal transduction network analysis
platform” that can screen each batch of CAR T cells and predict the efficacy and side-effect potential of that
specific batch. Because signal transduction networks integrate information from multiple input sources- for
example costimulatory and immunosuppressive cell surface receptors, patient genetic background, and T-cell
specific history of activation- we hypothesize that this readout will be a powerful predictor of function. Our
preliminary data show that small changes in CAR design parameters such as scFV binding domain affinity
produce measurable changes in signal transduction network state that correlate with functional variables such
as target killing ability and cytokine release. Further, we show that there exists considerable individual-to-
individual variation in batches of CAR T cells produced from different donors. Therefore, the two prerequisites
for an individualized predictive assay are present- variation in our measurement across the population, and the
functional relevance of our measurement to outcome parameters. Our interdisciplinary team consists of
experts in CAR development, signal transduction, proteomics, and bioinformatics. Our ambitious but
achievable goals are to expand the QMI panel to include CAR-specific components; to understand how CAR
design parameters influence both signal transduction network states and functional performance measures;
and to develop a predictive machine learning algorithm that translates QMI-derived signal transduction network
states into a functional biomarker of in vivo clinical efficacy. Successful completion these aims will (1) identify
specific proteins or protein interactions that determine clinically-relevant outcomes such as cytokine production
or cell killing ability, allowing CAR designers to rationally modify the design of CARs to target specific signaling
outcomes; (2) provide clinicians with a test to predict the clinical performance of CAR T cells on a batch-to-
batch basis; and (3) provide the community with a novel analytical platform to measure CAR activity.
项目摘要
此补助金是响应PAR-18-206,生物工程研究赠款(BRG)。我们的目标是适应
尖端的蛋白质组学网络分析平台,定量多重免疫共沉淀或QMI,
嵌合抗原受体(CAR)T细胞信号传导。然后,我们将使用CAR-QMI来表征信号
CAR下游的转导网络激活,以了解CAR如何指导T细胞
攻击和摧毁癌性靶点,并对疗效和副作用进行批次特异性预测
CAR T细胞产物的概况。CAR T细胞是一种突破性的抗癌疗法,最近赢得了FDA
批准用于复发性B细胞淋巴瘤。作为一种真正的“个性化药物”,CAR T细胞被制造用于
通过用病毒载体转导通过白细胞去除术收集的T细胞,
编码CAR。但是,由于每个批次都是唯一的,因此在以下方面,某些批次的性能优于其他批次:
产生缓解和/或有害的和有时致命的副作用,包括细胞因子风暴,
神经毒性本项目的目标是开发一个“个性化的信号转导网络分析
该平台可以筛选每批CAR T细胞并预测其功效和副作用潜力,
具体批次。由于信号转导网络整合了来自多个输入源的信息,
共刺激和免疫抑制细胞表面受体的实例、患者遗传背景和T细胞
特定的激活历史-我们假设这个读数将是功能的有力预测器。我们
初步数据显示CAR设计参数如scFV结合结构域亲和力的微小变化
产生与功能变量相关的信号转导网络状态的可测量变化,
如靶杀伤能力和细胞因子释放。此外,我们发现,存在相当大的个人-
从不同供体产生的CAR T细胞批次中的个体差异。因此,这两个先决条件
存在个体化预测分析的差异-我们在人群中的测量结果存在差异,
我们的测量与结果参数的功能相关性。我们的跨学科团队包括
CAR开发、信号转导、蛋白质组学和生物信息学专家。我们雄心勃勃,但
可实现的目标是扩展QMI面板,以包括CAR特定组件;了解CAR如何
设计参数影响信号转导网络状态和功能性能测量;
并开发一种预测机器学习算法,
将其转化为体内临床疗效的功能性生物标志物。成功完成这些目标将(1)确定
确定临床相关结果的特定蛋白质或蛋白质相互作用,
或细胞杀伤能力,允许CAR设计者合理地修改汽车的设计以靶向特异性信号传导
结果;(2)为临床医生提供一种测试,以预测CAR T细胞在批量生产中的临床表现。
批量基础;和(3)为社区提供一个新的分析平台来测量CAR活性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Edward Paucha Smith其他文献
Stephen Edward Paucha Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Edward Paucha Smith', 18)}}的其他基金
Quantitative protein network profiling to improve CAR design and efficacy
定量蛋白质网络分析以改进 CAR 设计和功效
- 批准号:
10578701 - 财政年份:2020
- 资助金额:
$ 48.03万 - 项目类别:
Subtyping the autisms using individualized protein network analysis
使用个体化蛋白质网络分析对自闭症进行亚型分类
- 批准号:
10212205 - 财政年份:2020
- 资助金额:
$ 48.03万 - 项目类别:
Purification of cell-type specific synaptic material using virally-expressed tags
使用病毒表达标签纯化细胞类型特异性突触物质
- 批准号:
9980828 - 财政年份:2019
- 资助金额:
$ 48.03万 - 项目类别:
Protein Interaction Network Analysis to Test the Synaptic Hypothesis of Autism
蛋白质相互作用网络分析检验自闭症突触假说
- 批准号:
8616138 - 财政年份:2014
- 资助金额:
$ 48.03万 - 项目类别:
Characterization of Autism Susceptibility Genes on Chromosome 15q11-13
染色体 15q11-13 上自闭症易感基因的特征
- 批准号:
8145607 - 财政年份:2010
- 资助金额:
$ 48.03万 - 项目类别:
Characterization of Autism Susceptibility Genes on Chromosome 15q11-13
染色体 15q11-13 上自闭症易感基因的特征
- 批准号:
7912550 - 财政年份:2010
- 资助金额:
$ 48.03万 - 项目类别:
相似海外基金
University of Aberdeen and Vertebrate Antibodies Limited KTP 23_24 R1
阿伯丁大学和脊椎动物抗体有限公司 KTP 23_24 R1
- 批准号:
10073243 - 财政年份:2024
- 资助金额:
$ 48.03万 - 项目类别:
Knowledge Transfer Partnership
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
- 批准号:
10752129 - 财政年份:2024
- 资助金额:
$ 48.03万 - 项目类别:
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
- 批准号:
2339201 - 财政年份:2024
- 资助金额:
$ 48.03万 - 项目类别:
Continuing Grant
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
- 批准号:
MR/Y008693/1 - 财政年份:2024
- 资助金额:
$ 48.03万 - 项目类别:
Research Grant
Developing first-in-class aggregation-specific antibodies for a severe genetic neurological disease
开发针对严重遗传神经系统疾病的一流聚集特异性抗体
- 批准号:
10076445 - 财政年份:2023
- 资助金额:
$ 48.03万 - 项目类别:
Grant for R&D
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
- 批准号:
23K14783 - 财政年份:2023
- 资助金额:
$ 48.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
- 批准号:
23KJ0394 - 财政年份:2023
- 资助金额:
$ 48.03万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Role of antibodies in hepatitis E virus infection
抗体在戊型肝炎病毒感染中的作用
- 批准号:
10639161 - 财政年份:2023
- 资助金额:
$ 48.03万 - 项目类别:
Defining the protective or pathologic role of antibodies in Post-Ebola Syndrome
定义抗体在埃博拉后综合症中的保护或病理作用
- 批准号:
10752441 - 财政年份:2023
- 资助金额:
$ 48.03万 - 项目类别:
Human CMV monoclonal antibodies as therapeutics to inhibit virus infection and dissemination
人 CMV 单克隆抗体作为抑制病毒感染和传播的治疗药物
- 批准号:
10867639 - 财政年份:2023
- 资助金额:
$ 48.03万 - 项目类别: