Investigating the synaptic pathology of Autism
研究自闭症的突触病理学
基本信息
- 批准号:10582939
- 负责人:
- 金额:$ 79.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-12-01 至 2027-11-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAgonistAutopsyAwardBathingBehaviorBehavioral AssayBiologicalBiologyCellular AssayCharacteristicsCo-ImmunoprecipitationsComplexDNA Sequence AlterationDataDevelopmentDiseaseElectroencephalographyElectrophysiology (science)EquilibriumEventFMR1FRAP1 geneFYN geneFeedbackGene ExpressionGene MutationGenesGeneticGenomeGlutamate ReceptorGlutamatesGrantHomeostasisHumanHyperactivityIn VitroInvestigationLinkMeasuresMediatingMembraneModelingMolecularMusMutationNeurodevelopmental DisorderNeuronsPI3K/AKTPathologyPathway interactionsPatientsPatternPhasePhenotypePhosphotransferasesProductivityProtein BiosynthesisProtein DynamicsProteinsRiskScaffolding ProteinSignal TransductionStimulusSynapsesSynaptic TransmissionSynaptic plasticitySystemTestingVibrissaeautism spectrum disorderbehavioral phenotypingdrug candidatedrug developmentexperimental studyeyeblink conditioninggene productgenetic risk factorin vivoinformation modelinformation processinginhibitormTOR InhibitormTOR inhibitionmTOR proteinmature animalmembermolecular phenotypemouse geneticsmouse modelneurotransmissionnovelnovel therapeuticspharmacologicreceptorresponserisk variantscaffoldstem
项目摘要
PROJECT SUMMARY
Genetic mutations that confer autism (ASD) risk often occur in genes that comprise signal transduction networks
that link synaptic transmission to downstream changes in gene expression. However, the dynamic, network-
scale behavior of these complex and interconnected signaling networks in normal or disease states is poorly
understood. This is the first renewal application of a highly productive R01 grant that built a quantitative multiplex
co-immunoprecipitation or QMI panel to study the dynamic activity of a 20-member protein interaction network
(PIN), consisting of glutamate receptors, scaffolds, and signal transduction molecules; mutations in the genes
encoding all target proteins have been genetically linked to autism. Using QMI, we discovered that this PIN
encodes information by varying the composition and intensity of modules of coordinated interactions in response
to incoming signals. Moreover, we found that mutations that contribute to autism risk disrupt synaptic PINs
by causing them to assume a network state that resembles the state of a wildtype neuron that has
undergone homeostatic scaling. This results in a reduced dynamic range of the network to change in response
to subsequent stimuli, and leads to a systems-level disturbance in basal glutamate tone (as reflected in disrupted
E/I balance). In the second cycle we focus on the question of, can we normalize ASD PINs, and will this
normalization correlate with functional rescue of phenotypes? In Aim 1, we focus on normalization via FYN
kinase, which we identified as a dysregulated network hub in FMR1-/y mice downstream of synaptic plasticity
inputs. Preliminary data demonstrate that inhibition of hyperactive FYN signaling normalizes hyperactive protein
synthesis and behavior; we propose to perform an extensive battery of molecular, cellular and behavioral assays
to investigate the potential of FYN inhibition to treat the phenotypes of FMR1 deficiency. In Aim 2, we extend our
network-scale analysis to a second PIN critical to synaptic plasticity, the mTOR network. We use
pharmacological and genetic inhibition of mTOR to model information flow through the mTOR PIN during
synaptic plasticity, and to establish which components of the pathway are required for homeostatic scaling, in
vivo or in vitro. In Aim 3, we focus on PIN normalization by manipulating synaptic activity. We attempt to `un-
scale' the synaptic PIN of ASD-mutation-carrying mice, and measure if this treatment is able to restore normal
PIN activity and the ability of the neuron to undergo normal homeostatic scaling. Critically, this last experiment
will reveal whether altered levels of neuronal activity downstream of developmental mechanisms cause disrupted
synaptic and mTOR signal transduction, or conversely if ongoing deficits in signal transduction are independent,
or even causative, of altered basal activity levels. Overall, this renewal would continue our investigations into the
molecular network mechanisms by which ASD risk genes disrupt synaptic signal transduction.
项目摘要
导致自闭症风险的基因突变通常发生在构成信号转导网络的基因中
连接突触传递和下游基因表达的变化。但是,动态的、网络的-
在正常或疾病状态下,这些复杂且相互关联的信号网络的规模行为很差,
明白这是第一次更新申请的一个高生产率的R 01赠款,建立了一个定量多路复用
免疫共沉淀或QMI面板,以研究20个成员的蛋白质相互作用网络的动态活性
(PIN)由谷氨酸受体,支架和信号转导分子组成;基因突变
编码所有靶蛋白的基因都与自闭症有关。使用QMI,我们发现这个PIN
通过改变协调相互作用模块的组成和强度来编码信息,
接收信号此外,我们发现导致自闭症风险的突变会破坏突触PIN
通过使它们呈现类似于野生型神经元的状态的网络状态,
经历了自我平衡的缩放。这导致网络响应变化的动态范围减小
随后的刺激,并导致系统水平的干扰基础谷氨酸张力(反映在中断
E/I余额)。在第二个周期中,我们关注的问题是,我们能否使ASD PIN正常化,
正常化与表型的功能拯救相关吗?在目标1中,我们重点关注通过FYN进行规范化
激酶,我们将其鉴定为FMR 1-/y小鼠突触可塑性下游的失调网络枢纽
输入。初步数据表明,抑制过度活跃的FYN信号正常化过度活跃的蛋白质
合成和行为;我们建议进行一系列广泛的分子、细胞和行为分析
研究FYN抑制治疗FMR 1缺陷表型的潜力。在目标2中,我们扩展了
对突触可塑性至关重要的第二个PIN,mTOR网络进行网络规模分析。我们使用
药理学和遗传学抑制mTOR,以模拟信息流通过mTOR PIN,
突触可塑性,并建立哪些组成部分的途径所需的稳态缩放,在
体内或体外。在目标3中,我们专注于通过操纵突触活动来实现PIN正常化。我们试图"联合国-
测量携带ASD突变的小鼠的突触PIN,并测量这种治疗是否能够恢复正常
PIN活性和神经元进行正常稳态缩放的能力。关键的是,最后一个实验
将揭示发育机制下游神经元活动水平的改变是否会导致发育机制的中断,
突触和mTOR信号转导,或者相反,如果信号转导中的持续缺陷是独立的,
甚至是基础活动水平改变的原因。总的来说,这一更新将继续我们对
ASD风险基因破坏突触信号转导的分子网络机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Edward Paucha Smith其他文献
Stephen Edward Paucha Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Edward Paucha Smith', 18)}}的其他基金
Quantitative protein network profiling to improve CAR design and efficacy
定量蛋白质网络分析以改进 CAR 设计和功效
- 批准号:
10374037 - 财政年份:2020
- 资助金额:
$ 79.3万 - 项目类别:
Quantitative protein network profiling to improve CAR design and efficacy
定量蛋白质网络分析以改进 CAR 设计和功效
- 批准号:
10578701 - 财政年份:2020
- 资助金额:
$ 79.3万 - 项目类别:
Subtyping the autisms using individualized protein network analysis
使用个体化蛋白质网络分析对自闭症进行亚型分类
- 批准号:
10212205 - 财政年份:2020
- 资助金额:
$ 79.3万 - 项目类别:
Purification of cell-type specific synaptic material using virally-expressed tags
使用病毒表达标签纯化细胞类型特异性突触物质
- 批准号:
9980828 - 财政年份:2019
- 资助金额:
$ 79.3万 - 项目类别:
Protein Interaction Network Analysis to Test the Synaptic Hypothesis of Autism
蛋白质相互作用网络分析检验自闭症突触假说
- 批准号:
8616138 - 财政年份:2014
- 资助金额:
$ 79.3万 - 项目类别:
Characterization of Autism Susceptibility Genes on Chromosome 15q11-13
染色体 15q11-13 上自闭症易感基因的特征
- 批准号:
8145607 - 财政年份:2010
- 资助金额:
$ 79.3万 - 项目类别:
Characterization of Autism Susceptibility Genes on Chromosome 15q11-13
染色体 15q11-13 上自闭症易感基因的特征
- 批准号:
7912550 - 财政年份:2010
- 资助金额:
$ 79.3万 - 项目类别:
相似国自然基金
Agonist-GPR119-Gs复合物的结构生物学研究
- 批准号:32000851
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
S1PR1 agonistによる脳血液関門制御を介した脳梗塞の新規治療法開発
S1PR1激动剂调节血脑屏障治疗脑梗塞新方法的开发
- 批准号:
24K12256 - 财政年份:2024
- 资助金额:
$ 79.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AHR agonistによるSLE皮疹の新たな治療薬の開発
使用 AHR 激动剂开发治疗 SLE 皮疹的新疗法
- 批准号:
24K19176 - 财政年份:2024
- 资助金额:
$ 79.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evaluation of a specific LXR/PPAR agonist for treatment of Alzheimer's disease
特定 LXR/PPAR 激动剂治疗阿尔茨海默病的评估
- 批准号:
10578068 - 财政年份:2023
- 资助金额:
$ 79.3万 - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
$ 79.3万 - 项目类别:
Targeting breast cancer microenvironment with small molecule agonist of relaxin receptor
用松弛素受体小分子激动剂靶向乳腺癌微环境
- 批准号:
10650593 - 财政年份:2023
- 资助金额:
$ 79.3万 - 项目类别:
AMPKa agonist in attenuating CPT1A inhibition and alcoholic chronic pancreatitis
AMPKa 激动剂减轻 CPT1A 抑制和酒精性慢性胰腺炎
- 批准号:
10649275 - 财政年份:2023
- 资助金额:
$ 79.3万 - 项目类别:
A randomized double-blind placebo controlled Phase 1 SAD study in male and female healthy volunteers to assess safety, pharmacokinetics, and transient biomarker changes by the ABCA1 agonist CS6253
在男性和女性健康志愿者中进行的一项随机双盲安慰剂对照 1 期 SAD 研究,旨在评估 ABCA1 激动剂 CS6253 的安全性、药代动力学和短暂生物标志物变化
- 批准号:
10734158 - 财政年份:2023
- 资助金额:
$ 79.3万 - 项目类别:
Investigating mechanisms underpinning outcomes in people on opioid agonist treatment for OUD: Disentangling sleep and circadian rhythm influences on craving and emotion regulation
研究阿片类激动剂治疗 OUD 患者结果的机制:解开睡眠和昼夜节律对渴望和情绪调节的影响
- 批准号:
10784209 - 财政年份:2023
- 资助金额:
$ 79.3万 - 项目类别:
A novel nanobody-based agonist-redirected checkpoint (ARC) molecule, aPD1-Fc-OX40L, for cancer immunotherapy
一种基于纳米抗体的新型激动剂重定向检查点 (ARC) 分子 aPD1-Fc-OX40L,用于癌症免疫治疗
- 批准号:
10580259 - 财政年份:2023
- 资助金额:
$ 79.3万 - 项目类别:
Identification and characterization of a plant growth promoter from wild plants: is this a novel plant hormone agonist?
野生植物中植物生长促进剂的鉴定和表征:这是一种新型植物激素激动剂吗?
- 批准号:
23K05057 - 财政年份:2023
- 资助金额:
$ 79.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)