Investigating the synaptic pathology of Autism
研究自闭症的突触病理学
基本信息
- 批准号:10582939
- 负责人:
- 金额:$ 79.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-12-01 至 2027-11-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAgonistAutopsyAwardBathingBehaviorBehavioral AssayBiologicalBiologyCellular AssayCharacteristicsCo-ImmunoprecipitationsComplexDNA Sequence AlterationDataDevelopmentDiseaseElectroencephalographyElectrophysiology (science)EquilibriumEventFMR1FRAP1 geneFYN geneFeedbackGene ExpressionGene MutationGenesGeneticGenomeGlutamate ReceptorGlutamatesGrantHomeostasisHumanHyperactivityIn VitroInvestigationLinkMeasuresMediatingMembraneModelingMolecularMusMutationNeurodevelopmental DisorderNeuronsPI3K/AKTPathologyPathway interactionsPatientsPatternPhasePhenotypePhosphotransferasesProductivityProtein BiosynthesisProtein DynamicsProteinsRiskScaffolding ProteinSignal TransductionStimulusSynapsesSynaptic TransmissionSynaptic plasticitySystemTestingVibrissaeautism spectrum disorderbehavioral phenotypingdrug candidatedrug developmentexperimental studyeyeblink conditioninggene productgenetic risk factorin vivoinformation modelinformation processinginhibitormTOR InhibitormTOR inhibitionmTOR proteinmature animalmembermolecular phenotypemouse geneticsmouse modelneurotransmissionnovelnovel therapeuticspharmacologicreceptorresponserisk variantscaffoldstem
项目摘要
PROJECT SUMMARY
Genetic mutations that confer autism (ASD) risk often occur in genes that comprise signal transduction networks
that link synaptic transmission to downstream changes in gene expression. However, the dynamic, network-
scale behavior of these complex and interconnected signaling networks in normal or disease states is poorly
understood. This is the first renewal application of a highly productive R01 grant that built a quantitative multiplex
co-immunoprecipitation or QMI panel to study the dynamic activity of a 20-member protein interaction network
(PIN), consisting of glutamate receptors, scaffolds, and signal transduction molecules; mutations in the genes
encoding all target proteins have been genetically linked to autism. Using QMI, we discovered that this PIN
encodes information by varying the composition and intensity of modules of coordinated interactions in response
to incoming signals. Moreover, we found that mutations that contribute to autism risk disrupt synaptic PINs
by causing them to assume a network state that resembles the state of a wildtype neuron that has
undergone homeostatic scaling. This results in a reduced dynamic range of the network to change in response
to subsequent stimuli, and leads to a systems-level disturbance in basal glutamate tone (as reflected in disrupted
E/I balance). In the second cycle we focus on the question of, can we normalize ASD PINs, and will this
normalization correlate with functional rescue of phenotypes? In Aim 1, we focus on normalization via FYN
kinase, which we identified as a dysregulated network hub in FMR1-/y mice downstream of synaptic plasticity
inputs. Preliminary data demonstrate that inhibition of hyperactive FYN signaling normalizes hyperactive protein
synthesis and behavior; we propose to perform an extensive battery of molecular, cellular and behavioral assays
to investigate the potential of FYN inhibition to treat the phenotypes of FMR1 deficiency. In Aim 2, we extend our
network-scale analysis to a second PIN critical to synaptic plasticity, the mTOR network. We use
pharmacological and genetic inhibition of mTOR to model information flow through the mTOR PIN during
synaptic plasticity, and to establish which components of the pathway are required for homeostatic scaling, in
vivo or in vitro. In Aim 3, we focus on PIN normalization by manipulating synaptic activity. We attempt to `un-
scale' the synaptic PIN of ASD-mutation-carrying mice, and measure if this treatment is able to restore normal
PIN activity and the ability of the neuron to undergo normal homeostatic scaling. Critically, this last experiment
will reveal whether altered levels of neuronal activity downstream of developmental mechanisms cause disrupted
synaptic and mTOR signal transduction, or conversely if ongoing deficits in signal transduction are independent,
or even causative, of altered basal activity levels. Overall, this renewal would continue our investigations into the
molecular network mechanisms by which ASD risk genes disrupt synaptic signal transduction.
项目摘要
赋予自闭症(ASD)风险的基因突变经常在构成信号转导网络的基因中发生
该连接突触传播与基因表达的下游变化。但是,动态,网络 -
正常或疾病状态中这些复杂和相互联系的信号网络的比例行为很差
理解。这是高产R01赠款的第一次续签应用,该赠款构建了定量多重
共免疫沉淀或QMI面板研究20成员的蛋白质相互作用网络的动态活性
(PIN),由谷氨酸受体,支架和信号转导分子组成;基因突变
编码所有靶蛋白的编码已与自闭症有关。使用QMI,我们发现这个销钉
通过改变协调相互作用的模块的组成和强度来编码信息以响应
传入信号。此外,我们发现有助于自闭症风险破坏突触引脚的突变
通过使他们采用类似于具有野生型神经元状态的网络状态
经过稳态缩放。这导致网络的动态范围减少以改变响应
随后的刺激,并导致基底谷氨酸酸盐的系统级干扰(如被破坏反映
E/i平衡)。在第二个周期中,我们关注的问题,我们可以将ASD引脚正常化,并且会这样
归一化与表型的功能拯救相关?在AIM 1中,我们专注于通过FYN的归一化
激酶,我们确定为突触可塑性下游的FMR1-/Y小鼠中的网络中心失调
输入。初步数据表明,抑制过度活跃的FYN信号传导使多动蛋白归一化
综合和行为;我们建议执行大量分子,细胞和行为测定
研究FYN抑制作用治疗FMR1缺乏症的表型的潜力。在AIM 2中,我们扩展了我们的
网络尺度分析对突触可塑性至关重要的第二引脚,即mTOR网络。我们使用
MTOR的药理和遗传抑制,以模拟通过MTOR PIN的信息流过MTOR PIN
突触可塑性,并确定稳态缩放需要哪些途径的组成部分
体内或体外。在AIM 3中,我们通过操纵突触活动来关注PIN归一化。我们试图不
缩放'ASD致电小鼠的突触销,并测量该处理是否能够恢复正常
销活动和神经元进行正常稳态缩放的能力。至关重要的是最后一个实验
将揭示发育机制下游的神经元活动水平是否导致破坏
突触和MTOR信号转导,或者相反,如果信号转导的持续缺陷是独立的,
甚至因果关系,基础活性水平改变。总体而言,这种续约将继续我们对
ASD风险基因破坏突触信号转导的分子网络机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Edward Paucha Smith其他文献
Stephen Edward Paucha Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Edward Paucha Smith', 18)}}的其他基金
Quantitative protein network profiling to improve CAR design and efficacy
定量蛋白质网络分析以改进 CAR 设计和功效
- 批准号:
10374037 - 财政年份:2020
- 资助金额:
$ 79.3万 - 项目类别:
Quantitative protein network profiling to improve CAR design and efficacy
定量蛋白质网络分析以改进 CAR 设计和功效
- 批准号:
10578701 - 财政年份:2020
- 资助金额:
$ 79.3万 - 项目类别:
Subtyping the autisms using individualized protein network analysis
使用个体化蛋白质网络分析对自闭症进行亚型分类
- 批准号:
10212205 - 财政年份:2020
- 资助金额:
$ 79.3万 - 项目类别:
Purification of cell-type specific synaptic material using virally-expressed tags
使用病毒表达标签纯化细胞类型特异性突触物质
- 批准号:
9980828 - 财政年份:2019
- 资助金额:
$ 79.3万 - 项目类别:
Protein Interaction Network Analysis to Test the Synaptic Hypothesis of Autism
蛋白质相互作用网络分析检验自闭症突触假说
- 批准号:
8616138 - 财政年份:2014
- 资助金额:
$ 79.3万 - 项目类别:
Characterization of Autism Susceptibility Genes on Chromosome 15q11-13
染色体 15q11-13 上自闭症易感基因的特征
- 批准号:
8145607 - 财政年份:2010
- 资助金额:
$ 79.3万 - 项目类别:
Characterization of Autism Susceptibility Genes on Chromosome 15q11-13
染色体 15q11-13 上自闭症易感基因的特征
- 批准号:
7912550 - 财政年份:2010
- 资助金额:
$ 79.3万 - 项目类别:
相似国自然基金
新型IL2Rβγ激动剂逐级控释联合放疗对抗三阴性乳腺癌的作用及机制研究
- 批准号:82303819
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载自组装型非核苷类STING激动剂的亚精胺水凝胶用于抗肿瘤免疫治疗及机制研究
- 批准号:82303561
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向SIRT3小分子激动剂调控三阴性乳腺癌细胞自噬和免疫微环境的机制研究
- 批准号:82373193
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于OSMAC-GNPS分析策略的蚂蚱内生真菌Aspergillus sp.中新颖泛PPAR激动剂的发现及治疗NASH研究
- 批准号:82304340
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
探究FSP1激动剂在治疗肾缺血再灌注损伤中的分子机理与应用
- 批准号:82304600
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
GPR39 as a Therapeutic Target in Aging-Related Vascular Cognitive Impairment and Dementia
GPR39 作为衰老相关血管认知障碍和痴呆的治疗靶点
- 批准号:
10734713 - 财政年份:2023
- 资助金额:
$ 79.3万 - 项目类别:
Alcohol-induced epigenetic reprogramming of PPAR-α affects allopregnanolone biosynthesis
酒精诱导的 PPAR-α 表观遗传重编程影响异孕酮生物合成
- 批准号:
10658534 - 财政年份:2023
- 资助金额:
$ 79.3万 - 项目类别:
HER1-3 and Death Receptor protein folding as therapeutic vulnerabilities
HER1-3 和死亡受体蛋白折叠作为治疗漏洞
- 批准号:
10721930 - 财政年份:2023
- 资助金额:
$ 79.3万 - 项目类别:
The Role of Layilin as a Novel Regulator of Platelet Activation and Thromboinflammation
Layilin 作为血小板活化和血栓炎症的新型调节剂的作用
- 批准号:
10638243 - 财政年份:2023
- 资助金额:
$ 79.3万 - 项目类别:
Targeting Cholesterol Homeostasis to maintain vision in MS-like optic neuritis
针对多发性硬化症样视神经炎的胆固醇稳态以维持视力
- 批准号:
10657163 - 财政年份:2023
- 资助金额:
$ 79.3万 - 项目类别: