Towards autonomous management of cardiogenic shock

迈向心源性休克的自主管理

基本信息

  • 批准号:
    10376242
  • 负责人:
  • 金额:
    $ 25.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Project Summary Physicians in the cardiac intensive care unit (CCU) make decisions in an increasingly data- and knowledge- rich world, yet often they get little help. Currently, each physician makes decisions based on his or her mental model of the patient’s physiology, together with mental predictions of the patient’s response to intervention. This approach can lead to a range of behaviors that compromise patient outcomes, including oversimplification of the physiology, errors due to cognitive overload, and physician to physician variability in decision making. A computational tool equipped with quantitative knowledge of physiology, the ability to systematically evaluate all the data, and informed by a database of past action-outcome events could aid the physician with valuable suggestions for action. We propose to train an algorithm to make decisions about dosing vasoactive medications and initiating mechanical support in patients with cardiogenic shock due to decompensated heart failure. This focused set of decisions entails calculations about the physiology that are normally performed in a physician’s head. We frame the decision problem as optimizing cardiovascular function to preserve oxygen delivery, and we apply tools from optimal control. Rather than hand-design a CCU controller we will use reinforcement learning (RL) techniques to “fit” one. The field of RL has experienced explosive growth over the past few years, with notable advances in strategic decision problems and robotics. A key challenge in the clinical environment is that the exploration phase of learning (“trial and error”) would be unethical in real patients. A second challenge is that the availability of patient data, while growing, is likely to be a bottleneck. We will leverage state-of-the-art model-based RL to train an algorithm using a combination of simulation and off-policy learning from historical data. We will use a model of cardiovascular physiology that underlies cardiac simulators in use today for the training of cardiologists. Historical patient data will come from the Massachusetts General Hospital Clinical Data Animation Center which has recorded real-time telemetry waveform data in addition to standard electronic medical record data from all CCU patients spanning several years. This is one of the largest and most complete datasets of its kind. The complexity of managing cardiogenic shock will continue to escalate as tools become more sophisticated and patients live longer, with more extensive comorbidities. Advanced decision support tools could help tame this complexity, improving the quality of care as well as democratizing it.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas E. Houstis其他文献

Transferrin Saturation Is a Better Predictor Than Ferritin of Metabolic and Hemodynamic Exercise Responses in HFpEF
转铁蛋白饱和度是射血分数保留型心力衰竭(HFpEF)患者代谢和血流动力学运动反应的比铁蛋白更好的预测因子
  • DOI:
    10.1016/j.jchf.2025.02.024
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    11.800
  • 作者:
    Sujin Lee;Nicholas E. Houstis;Thomas F. Cunningham;Liana C. Brooks;Kailin Chen;Charles L. Slocum;Katrina Ostrom;Claire Birchenough;Elizabeth Moore;Helena Tattersfield;Haakon Sigurslid;Yugene Guo;Isabela Landsteiner;Jennifer N. Rouvina;Gregory D. Lewis;Rajeev Malhotra
  • 通讯作者:
    Rajeev Malhotra

Nicholas E. Houstis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas E. Houstis', 18)}}的其他基金

Towards autonomous management of cardiogenic shock
迈向心源性休克的自主管理
  • 批准号:
    10580751
  • 财政年份:
    2021
  • 资助金额:
    $ 25.2万
  • 项目类别:
Towards autonomous management of cardiogenic shock
迈向心源性休克的自主管理
  • 批准号:
    10218696
  • 财政年份:
    2021
  • 资助金额:
    $ 25.2万
  • 项目类别:

相似海外基金

Artificial intelligence coupled to automation for accelerated medicine design
人工智能与自动化相结合,加速药物设计
  • 批准号:
    EP/Z533038/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Research Grant
Automation and Optimization of High Dose-Rate Gynaecological Brachytherapy with Machine Learning and Artificial Intelligence
利用机器学习和人工智能实现高剂量率妇科近距离放射治疗的自动化和优化
  • 批准号:
    546757-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
SBIR Phase II: Advanced Artificial Intelligence for Robotic E-Commerce Pick-and-Pack Automation
SBIR 第二阶段:用于机器人电子商务分拣和包装自动化的先进人工智能
  • 批准号:
    2111915
  • 财政年份:
    2022
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Cooperative Agreement
SBIR Phase I: Artificial Intelligence Enhanced Design Automation for General Engineering Systems
SBIR 第一阶段:通用工程系统的人工智能增强设计自动化
  • 批准号:
    2055030
  • 财政年份:
    2021
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Standard Grant
Automation of Neuro-Linguistic Programming methods using Artificial Intelligence to interpret unconscious thoughts and values for personal development
使用人工智能的神经语言编程方法的自动化来解释无意识的想法和价值观以促进个人发展
  • 批准号:
    10011174
  • 财政年份:
    2021
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Feasibility Studies
Automation and Optimization of High Dose-Rate Gynaecological Brachytherapy with Machine Learning and Artificial Intelligence
利用机器学习和人工智能实现高剂量率妇科近距离放射治疗的自动化和优化
  • 批准号:
    546757-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
SBIR Phase I: Advanced Artificial Intelligence for Robotic E-Commerce Pick-and-Pack Automation
SBIR 第一阶段:用于机器人电子商务分拣和包装自动化的先进人工智能
  • 批准号:
    2014689
  • 财政年份:
    2020
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Standard Grant
Separation of Additive Layer Supports by Automation & Artificial Intelligence
通过自动化分离附加层支撑
  • 批准号:
    72333
  • 财政年份:
    2020
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Feasibility Studies
Artificial Intelligence for Production Automation (AIPA) - Development of an Machine Learning Platform for Additive Manufacturing
生产自动化人工智能 (AIPA) - 开发增材制造机器学习平台
  • 批准号:
    77759
  • 财政年份:
    2020
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Collaborative R&D
Automation and Optimization of High Dose-Rate Gynaecological Brachytherapy with Machine Learning and Artificial Intelligence
利用机器学习和人工智能实现高剂量率妇科近距离放射治疗的自动化和优化
  • 批准号:
    546757-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了