Evaluating and Improving Utilization of Evidence-Based Medical Therapy in Patients with Heart Failure using Automated Tools in the Electronic Health Record
使用电子健康记录中的自动化工具评估和改善心力衰竭患者循证医学治疗的使用
基本信息
- 批准号:10375578
- 负责人:
- 金额:$ 19.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:Acute Renal Failure with Renal Papillary NecrosisAddressAdrenergic beta-AntagonistsAdultAffectAlgorithm DesignAlgorithmsAnaphylaxisAngiotensin ReceptorAngiotensin-Converting Enzyme InhibitorsAngiotensinsAutomated Clinical Decision SupportAutomationBradycardiaCardiovascular DiseasesCardiovascular systemCaringClinicalCodeConsensusCoughingCritical CareDataDatabasesDecision MakingDevelopment PlansDiagnosisDocumentationEchocardiographyElectronic Health RecordEligibility DeterminationEnsureEnvironmentEvaluationEvidence based treatmentFeedbackFocus GroupsFunctional disorderGoalsGoldHealthcareHeart failureHospitalizationHospitalsIndividualInformaticsInstitutionIntensive CareK-Series Research Career ProgramsLaboratoriesLeadLeftLow Cardiac OutputMachine LearningManualsMeasurementMeasuresMedicalMedical HistoryMedical InformaticsMedical RecordsMentorsMentorshipMethodologyMineralocorticoid ReceptorModelingNatural Language ProcessingNeprilysinOutcomes ResearchOutpatientsPatient CarePatient-Focused OutcomesPatientsPeptidyl-Dipeptidase APharmaceutical PreparationsPhenotypePhysiciansProcessProviderQualitative EvaluationsQualitative ResearchQuality of CareRecommendationRecording of previous eventsRecordsRegistriesReportingResearchResearch MethodologyResourcesRiskSourceStructureSurveysSystolic heart failureTechnologyTestingTherapeuticTherapeutic AgentsTimeTrainingTreatment FailureValidationVentricularadvanced analyticsanalytical toolantagonistautomated algorithmbasecare deliverycareercareer developmentclinical careclinical decision supportcomputing resourcesdeep learningdesignevidence baseexperiencefollow-uphealth datahospitalization rateshyperkalemiaimplementation strategyimprovedimproved outcomeindividual patientinhibitormortalityopen sourcepatient orientedpatient subsetspilot testpoint of careprogramsprospectiverecruitstructured datasupport toolstime usetool
项目摘要
PROJECT SUMMARY
Heart failure (HF) affects over 6 million US adults, with high rates of hospitalization and nearly 50% mortality at
5 years from diagnosis. Nearly half of these patients have systolic HF with multiple evidence-based therapeutic
options proven to reduce the risk of hospitalization and mortality in this subgroup of patients. Evaluating the
appropriate utilization of these therapies is currently limited to post-hoc assessments of manually abstracted
patient records at a limited number of hospitals participating in quality improvement registries. These manual
abstraction strategies do not offer opportunities to improve care in real-time, and even at hospitals engaged in
quality improvement efforts, only 1 in 5 of eligible patients with HF receive all first-line evidence based medical
treatments. In this patient-oriented mentored career development award proposal, Dr. Rohan Khera proposes to
leverage the ubiquitous digitization of medical records in the electronic health record (EHR) to address the
adequate utilization of evidence based medical therapy in HF. He proposes to use a large, publicly accessible,
deidentified EHR database to develop and validate an algorithm that uses deep learning based natural language
processing (NLP) within unstructured clinical documentation for hospitalized HF patients to identify those with
systolic HF (Aim #1). He will engage clinicians to design consensus-based algorithms to identify
contraindications to HF treatments, developed as algorithms within the EHR (Aim #2). Finally, he will construct
a prototypic clinical decision support (CDS) tool identifying HF treatment eligibility in real-time using the
algorithms and evaluate potential implementation strategies using qualitative evaluation of feedback from
clinicians and patients (Aim #3). While proposed as a strategy to evaluate quality of care of individual patients,
the proposed research will also model a fully automated electronic clinical quality measure for HF. The algorithms
will be made open source to allow institutions to validate and apply them to their individual care setting. The
proposal is supported by strong mentorship from experts in quality measure design, informatics, advanced NLP,
CDS design, and qualitative research methodology. The facilities at Yale Center of Outcomes Research and
Evaluation, which designs and evaluates national quality measures, and has access to computational resources
required to accomplish the research goals as well as to the Yale EHR to validate the models are major strengths
of the application. The proposed period of mentored research will support Dr. Khera’s training in medical
informatics, advanced analytic tools such as NLP, and qualitative research methodology. The experience and
skillset acquired during this period will support Dr. Khera’s transition to independence where he plans to lead
multi-institutional collaboratives to evaluate the use of automated tools in the measurement and improvement of
the quality of medical care in HF. The career development plan that accompanies the proposal is designed to
support Dr. Khera’s long-term career goal to be a national leader in the design and implementation of informatics-
based approaches of delivering high quality, patient-centered, cardiovascular care.
项目总结
心力衰竭(HF)影响着600多万美国成年人,住院率高,死亡率近50%。
5年后确诊。这些患者中有近一半患有收缩期心衰,并接受了多种循证治疗
事实证明,这些选择可以降低这一亚组患者的住院风险和死亡率。评估
这些疗法的适当应用目前仅限于对人工提取的
参与质量改进登记的有限数量的医院的患者记录。这些手册
抽象策略不能提供实时改善护理的机会,甚至在参与的医院也不能
质量改进的努力,只有五分之一的符合条件的心力衰竭患者接受了所有一线循证医学
治疗。在这份以患者为导向的指导式职业发展奖提案中,Rohan Khera博士建议
利用电子健康记录(EHR)中无处不在的医疗记录数字化来解决
在心力衰竭中充分利用循证医学治疗。他建议使用一个大型的、可公开访问的、
确定的EHR数据库,以开发和验证使用基于自然语言的深度学习的算法
处理(NLP)住院心力衰竭患者的非结构化临床文件,以识别那些
收缩心衰(目标1)。他将聘请临床医生设计基于共识的算法来识别
心衰治疗的禁忌症,作为《电子病历》(目标2)内的算法制定。最后,他将构建
一种原型临床决策支持(CDS)工具,使用
算法和使用反馈的定性评估评估潜在的实施策略
临床医生和患者(目标3)。虽然被建议作为评估个别患者的护理质量的策略,
这项拟议的研究还将为心衰的全自动电子临床质量测量建立模型。算法
将是开源的,以允许机构验证它们并将其应用于其个人护理环境。这个
提案得到了来自质量度量设计、信息学、高级自然语言处理、
CDS设计和定性研究方法。耶鲁大学结果研究和研究中心的设施
评估,设计和评估国家质量衡量标准,并可访问计算资源
需要完成研究目标以及耶鲁大学电子健康记录来验证模型是主要的优势
应用程序的。拟议的指导性研究期间将支持Khera博士的医学培训
信息学,先进的分析工具,如自然语言处理,和定性研究方法。体验和
在此期间获得的技能将支持Khera博士过渡到他计划领导的独立
多机构协作,以评估自动化工具在衡量和改进
心衰患者的医疗服务质量。该提案附带的职业发展计划旨在
支持Khera博士的长期职业目标,即成为信息学设计和实施方面的国家领导者-
提供高质量、以患者为中心的心血管护理的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rohan Khera其他文献
Rohan Khera的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rohan Khera', 18)}}的其他基金
Evaluating and Improving Utilization of Evidence-Based Medical Therapy in Patients with Heart Failure using Automated Tools in the Electronic Health Record
使用电子健康记录中的自动化工具评估和改善心力衰竭患者循证医学治疗的使用
- 批准号:
10594487 - 财政年份:2021
- 资助金额:
$ 19.2万 - 项目类别:
Evaluating and Improving Utilization of Evidence-Based Medical Therapy in Patients with Heart Failure using Automated Tools in the Electronic Health Record
使用电子健康记录中的自动化工具评估和改善心力衰竭患者循证医学治疗的使用
- 批准号:
10214973 - 财政年份:2021
- 资助金额:
$ 19.2万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 19.2万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 19.2万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 19.2万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 19.2万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 19.2万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 19.2万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 19.2万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 19.2万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 19.2万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 19.2万 - 项目类别:
Research Grant