Mechanistic maps of adaptive responses to therapeutic stress to optimize combination therapies.

对治疗应激的适应性反应的机制图,以优化联合疗法。

基本信息

  • 批准号:
    10376362
  • 负责人:
  • 金额:
    $ 51.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Summary. In triple-negative breast cancer and high-grade serous ovarian cancer, the emergence of resistance to therapy is virtually inevitable and contributes to dismal long-term patient outcomes. The team will test the hypothesis that tumor ecosystems rapidly adapt to stress engendered by therapies, leading to the rapid emergence of resistance. As a corollary, blocking adaptive responses in tumor cells and the immune microenvironment will interdict the emergence of resistance. The objective is to monitor mechanisms underlying adaptive responses across temporal and spatial scales with single-cell precision, predict responses to untested combinatorial perturbations, and validate predicted drug combinations, fueling future clinical trials. An interactive team with diverse and complementary expertise and long collaboration history has been assembled: cancer and systems biology and therapeutics (Mills, contact PI, OHSU), computational biology/image analysis (Korkut, PI, MDACC; Goecks, OHSU), bioinformatics and systems biology (Liang, PI, MDACC), single-cell transcriptomics and proteomics (Mohammed, OHSU), molecular and anatomic pathology (Corless, OHSU; Sahin, MDACC), and ovarian and breast cancer translational research (Westin, MDACC; Mitri, OHSU). We will pursue two specific aims. Aim 1. Develop novel algorithms to create mechanistic maps of adaptive responses to therapeutic stress. The team will innovate algorithms to build data-driven and predictive models encompassing tumor cell signaling, microenvironment, and immune modulation. An extensive pre-existing longitudinal proteomics dataset of cell lines, xenografts, novel murine transplantable syngeneic models, PDXs, and patient samples will serve as the experimental data and constraints driving model construction. The modeling approaches will identify cellular vulnerabilities arising from adaptive responses to therapeutic stress and predict responses to untested combinatorial perturbations. The team will also determine whether therapeutic targeting “steers” proteomically heterogeneous tumors to a more therapeutically tractable homogenous state. For this purpose, we will use state- of-the-art multiplexed imaging-based proteomics technologies to formulate and implement data-driven models at spatial and single-cell precision. The single-cell, data-driven modeling will demonstrate how targeted therapies alter the tumor and immune microenvironment, leading to therapeutic vulnerabilities that new targeted therapy or immunotherapy combinations could exploit. Aim 2. Validate rational drug combinations targeting adaptive responses to therapy in relevant settings. The team will use cell lines, xenografts, PDXs, and novel murine transplantable syngeneic models to validate the therapeutic tractability of the rational drug combinations predicted by the data-driven models under Aim 1. Importantly, the experimental assessment will inform and improve the computational models through iterative data acquisition and subsequent remodeling. Novel therapy combinations will be assessed through clinical trials supported by other funds. The emerging principles and tools are highly applicable to other cancer lineages and could provide broad benefits.
总结。在三阴性乳腺癌和高级浆液性卵巢癌中,出现耐药性

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anil Korkut其他文献

Anil Korkut的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anil Korkut', 18)}}的其他基金

Mechanistic maps of adaptive responses to therapeutic stress to optimize combination therapies.
对治疗应激的适应性反应的机制图,以优化联合疗法。
  • 批准号:
    10212771
  • 财政年份:
    2021
  • 资助金额:
    $ 51.64万
  • 项目类别:
Mechanistic maps of adaptive responses to therapeutic stress to optimize combination therapies.
对治疗应激的适应性反应的机制图,以优化联合疗法。
  • 批准号:
    10608997
  • 财政年份:
    2021
  • 资助金额:
    $ 51.64万
  • 项目类别:

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.64万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.64万
  • 项目类别:
    Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 51.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 51.64万
  • 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 51.64万
  • 项目类别:
    Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 51.64万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 51.64万
  • 项目类别:
    Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 51.64万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 51.64万
  • 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
  • 批准号:
    BB/X013049/1
  • 财政年份:
    2023
  • 资助金额:
    $ 51.64万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了