Mechanistic maps of adaptive responses to therapeutic stress to optimize combination therapies.
对治疗应激的适应性反应的机制图,以优化联合疗法。
基本信息
- 批准号:10212771
- 负责人:
- 金额:$ 54.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAnatomyAutomobile DrivingBioinformaticsBiologicalBreastCancer BiologyCell LineCellsClinical ResearchClinical TrialsCollaborationsCombination immunotherapyCombined Modality TherapyComputational BiologyComputer ModelsDNA DamageDataData SetData SourcesDiseaseDrug CombinationsDrug resistanceEcosystemFundingFunding MechanismsFutureGenerationsHeterogeneityImage AnalysisImmune checkpoint inhibitorImmunofluorescence ImmunologicImmunologyImmunomodulatorsIn VitroIsogenic transplantationLeadLibrariesMEKsMalignant NeoplasmsMalignant neoplasm of ovaryMapsModelingMolecularMonitorMusNetwork-basedOncogenicOutcomeOvarianPathologyPathway interactionsPatient-Focused OutcomesPatientsPeriodicityPharmaceutical PreparationsPre-Clinical ModelPrediction of Response to TherapyProcessProteinsProteomicsRecording of previous eventsResistanceSamplingSerousSignal TransductionStressSystems BiologyTechnologyTestingTherapeuticTissuesTransplantationUniversity of Texas M D Anderson Cancer CenterValidationXenograft procedurebasebiological adaptation to stresscancer clinical trialclinical trial implementationclinically relevantcombinatorialcomputerized toolsdata acquisitiondesigndrug relapseimmune checkpointimmunoregulationimprovedin vivoin vivo Modelinnovationinsightmalignant breast neoplasmmathematical modelmultiplexed imagingneoplastic cellnew therapeutic targetnovelnovel drug combinationnovel therapeuticspre-clinical assessmentpredicting responsepredictive modelingprogrammed cell death ligand 1programsresistance mechanismresponsespatiotemporaltargeted treatmenttherapeutic targettherapy resistanttooltranscriptomicstranslational cancer researchtriple-negative invasive breast carcinomatumortumor heterogeneitytumor-immune system interactionsvirtual
项目摘要
Summary. In triple-negative breast cancer and high-grade serous ovarian cancer, the emergence of resistance
to therapy is virtually inevitable and contributes to dismal long-term patient outcomes. The team will test the
hypothesis that tumor ecosystems rapidly adapt to stress engendered by therapies, leading to the rapid
emergence of resistance. As a corollary, blocking adaptive responses in tumor cells and the immune
microenvironment will interdict the emergence of resistance. The objective is to monitor mechanisms underlying
adaptive responses across temporal and spatial scales with single-cell precision, predict responses to untested
combinatorial perturbations, and validate predicted drug combinations, fueling future clinical trials. An interactive
team with diverse and complementary expertise and long collaboration history has been assembled: cancer and
systems biology and therapeutics (Mills, contact PI, OHSU), computational biology/image analysis (Korkut, PI,
MDACC; Goecks, OHSU), bioinformatics and systems biology (Liang, PI, MDACC), single-cell transcriptomics
and proteomics (Mohammed, OHSU), molecular and anatomic pathology (Corless, OHSU; Sahin, MDACC), and
ovarian and breast cancer translational research (Westin, MDACC; Mitri, OHSU). We will pursue two specific
aims. Aim 1. Develop novel algorithms to create mechanistic maps of adaptive responses to therapeutic stress.
The team will innovate algorithms to build data-driven and predictive models encompassing tumor cell signaling,
microenvironment, and immune modulation. An extensive pre-existing longitudinal proteomics dataset of cell
lines, xenografts, novel murine transplantable syngeneic models, PDXs, and patient samples will serve as the
experimental data and constraints driving model construction. The modeling approaches will identify cellular
vulnerabilities arising from adaptive responses to therapeutic stress and predict responses to untested
combinatorial perturbations. The team will also determine whether therapeutic targeting “steers” proteomically
heterogeneous tumors to a more therapeutically tractable homogenous state. For this purpose, we will use state-
of-the-art multiplexed imaging-based proteomics technologies to formulate and implement data-driven models
at spatial and single-cell precision. The single-cell, data-driven modeling will demonstrate how targeted therapies
alter the tumor and immune microenvironment, leading to therapeutic vulnerabilities that new targeted therapy
or immunotherapy combinations could exploit. Aim 2. Validate rational drug combinations targeting adaptive
responses to therapy in relevant settings. The team will use cell lines, xenografts, PDXs, and novel murine
transplantable syngeneic models to validate the therapeutic tractability of the rational drug combinations
predicted by the data-driven models under Aim 1. Importantly, the experimental assessment will inform and
improve the computational models through iterative data acquisition and subsequent remodeling. Novel therapy
combinations will be assessed through clinical trials supported by other funds. The emerging principles and tools
are highly applicable to other cancer lineages and could provide broad benefits.
摘要在三阴性乳腺癌和高级别浆液性卵巢癌中,耐药的出现
实际上不可避免,并导致长期患者结果令人沮丧。该小组将测试
假设肿瘤生态系统迅速适应治疗产生的压力,导致肿瘤的快速生长。
抵抗的出现。作为一个必然的结果,阻断肿瘤细胞和免疫系统的适应性反应,
微环境将阻断耐药性的出现。目标是监测
跨时间和空间尺度的适应性反应,单细胞精度,预测对未经测试的
组合扰动,并验证预测的药物组合,为未来的临床试验提供动力。交互式
我们已经组建了一个拥有不同和互补专业知识和长期合作历史的团队:癌症和
系统生物学和治疗学(米尔斯,联系PI,OHSU),计算生物学/图像分析(Korkut,PI,
MDACC; Goelop,OHSU),生物信息学和系统生物学(Liang,PI,MDACC),单细胞转录组学
和蛋白质组学(Mohammed,OHSU),分子和解剖病理学(Corless,OHSU; Sahin,MDACC),以及
卵巢癌和乳腺癌转化研究(Westin,MDACC; Mitri,OHSU)。我们将追踪两个具体的
目标。目标1。开发新的算法来创建对治疗压力的适应性反应的机制图。
该团队将创新算法,以建立涵盖肿瘤细胞信号传导的数据驱动和预测模型,
微环境和免疫调节。一个广泛的预先存在的细胞纵向蛋白质组学数据集
细胞系、异种移植物、新型鼠可移植同基因模型、PDX和患者样品将作为
实验数据和约束驱动模型构建。建模方法将识别细胞
脆弱性产生的适应性反应,治疗压力和预测的反应,
组合扰动该团队还将确定治疗靶向是否能从蛋白质组学上“引导”
将异质性肿瘤转化为更易于治疗的同质状态。为此,我们将使用国家-
最先进的多路复用成像为基础的蛋白质组学技术,以制定和实施数据驱动的模型
在空间和单细胞的精度。单细胞,数据驱动的建模将展示靶向治疗如何
改变肿瘤和免疫微环境,导致新的靶向治疗
或免疫疗法组合可以利用。目标2.以适应性为靶点的合理药物组合
在相关环境中对治疗的反应。研究小组将使用细胞系、异种移植物、PDX和新型鼠
可移植的同基因模型,以验证合理药物组合的治疗可处理性
目标1下的数据驱动模型预测。重要的是,实验评估将告知和
通过迭代数据采集和随后的重建来改进计算模型。新疗法
将通过其他基金支持的临床试验对联合用药进行评估。新出现的原则和工具
非常适用于其他癌症谱系,并可提供广泛的益处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anil Korkut其他文献
Anil Korkut的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anil Korkut', 18)}}的其他基金
Mechanistic maps of adaptive responses to therapeutic stress to optimize combination therapies.
对治疗应激的适应性反应的机制图,以优化联合疗法。
- 批准号:
10376362 - 财政年份:2021
- 资助金额:
$ 54.05万 - 项目类别:
Mechanistic maps of adaptive responses to therapeutic stress to optimize combination therapies.
对治疗应激的适应性反应的机制图,以优化联合疗法。
- 批准号:
10608997 - 财政年份:2021
- 资助金额:
$ 54.05万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 54.05万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 54.05万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 54.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 54.05万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 54.05万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 54.05万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 54.05万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 54.05万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 54.05万 - 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 54.05万 - 项目类别:
Research Grant