Data-driven Head Motion Correction in PET Imaging Using Deep Learning

使用深度学习在 PET 成像中进行数据驱动的头部运动校正

基本信息

  • 批准号:
    10376855
  • 负责人:
  • 金额:
    $ 20.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-15 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary Positron-emission tomography (PET) is an imaging modality that allows clinicians and researchers to study the physiological or pathological processes of the human body, and in particular the brain via the use of specific tracers. For brain PET imaging, patient head movement during scanning presents a challenge for accurate PET image reconstruction and subsequent quantitative analysis. Problems due to head motion are exacerbated by the long duration of the scans, with scan times commonly over one hour. Furthermore, some PET studies specifically involve subjects that either have trouble staying still due to psychological variations, e.g. patients with neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, or psychological variations, e.g. subjects with anxiety disorders, or are required to participate in tasks that involve movement, e.g. smoking cigarettes while scanning. In brain scans, the average head motion can vary from 7 mm in clinical scans to triple this amount for longer research scans. Quantitatively, a 5 mm head motion can produce biases of up to ~35% in regional intensities and ∼15% in volume of distribution estimates, which could much larger than the difference observed in regional intensities or binding potential that distinguish different demographic groups being studied. The ability to track and correct head motion, therefore, would be of high utility in both clinical and research PET studies. In the past, many motion correction methods have been proposed. However, except for hardware-based approaches, there has been no method that can track frequent head motion on-the-fly during the PET acquisition. Hardware-based approaches are not readily available for clinical translation or used by other research facilities due to highly-customized software/hardware setup. To address this challenge, we propose to develop a data-driven methodology using deep learning to track and estimate rigid head motion using PET raw data, and incorporate both tracer type and time as conditional variables into this deep neural network design in order to handle diverse PET tracer types and their dynamic behavior. Overall, these solutions will provide for a data-driven motion estimation methodology to improve the quality of PET imaging. Specifically, we will start with the development and testing of our methodology for rigid head motion estimation using single-tracer PET raw data. Then we will perform evaluation of our multi-tracer motion estimation methodology applied to real PET data with a diverse range of tracers. Finally, in the exploratory phase, we will integrate time-of-flight information into deep learning-based motion prediction. The significance of this proposal is that it will allow for improved quality of PET imaging in real time and potentially allow for its use in clinical PET systems that do not have special motion tracking hardware. This work will serve as a first step towards developing data-driven motion estimation algorithms for full body PET imaging. The innovation lies in the development of what is a data-driven solution to the problem of real time motion estimation.
项目摘要 正电子发射断层扫描(PET)是一种成像方式,允许临床医生和研究人员研究 通过使用特定的免疫调节剂,可以调节人体,特别是大脑的生理或病理过程。 追踪器对于脑PET成像,扫描期间的患者头部移动对准确的PET成像提出了挑战。 PET图像重建和随后的定量分析。头部运动引起的问题是 由于扫描持续时间长,扫描时间通常超过一小时,此外,一些 PET研究特别涉及那些由于心理变化而难以保持静止的受试者, 例如患有神经退行性疾病如阿尔茨海默病和帕金森病的患者,或 心理变化,例如患有焦虑症的受试者,或需要参与涉及 移动,例如在扫描时吸烟。在大脑扫描中,头部的平均运动可以从7 在临床扫描中,将这一数量增加到三倍,用于更长时间的研究扫描。定量地,5 mm头部运动可以 在区域强度方面产生高达35%的偏差,在分布量估计方面产生高达15%的偏差,这可能 远大于区域强度或结合势的差异, 正在研究的人口群体。因此,跟踪和校正头部运动的能力将是高性能的。 在临床和研究PET研究中的实用性。在过去,已经使用了许多运动校正方法。 提出了然而,除了基于硬件的方法之外,还没有能够跟踪频繁的 在PET采集期间的运行中的头部运动。基于硬件的方法并不容易获得 由于高度定制的软件/硬件设置,临床翻译或由其他研究机构使用。到 为了应对这一挑战,我们建议开发一种使用深度学习的数据驱动方法, 使用PET原始数据估计刚性头部运动,并将示踪剂类型和时间作为条件 变量,以便处理不同的PET示踪剂类型及其动态特性。 行为总的来说,这些解决方案将提供数据驱动的运动估计方法,以改善运动估计的性能。 PET成像质量。具体来说,我们将从开发和测试我们的方法开始, 使用单示踪剂PET原始数据进行头部运动估计。然后,我们将执行我们的多示踪剂的评价 运动估计方法应用于具有不同范围示踪剂的真实的PET数据。最后在 在探索阶段,我们将把飞行时间信息整合到基于深度学习的运动预测中。的 该提议的重要性在于它将允许在真实的时间内改善PET成像的质量 允许其在不具有特殊运动跟踪硬件的临床PET系统中使用。这项工作将有助于 作为开发用于全身PET成像的数据驱动运动估计算法的第一步。的 创新之处在于开发了一种数据驱动的解决方案,以解决真实的时间运动问题 估计。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Supervised Deep Learning for Head Motion Correction in PET.
PET 中头部运动校正的监督深度学习。
MULTI-TASK DEEP LEARNING AND UNCERTAINTY ESTIMATION FOR PET HEAD MOTION CORRECTION.
宠物头部运动校正的多任务深度学习和不确定性估计。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Aaron Onofrey其他文献

John Aaron Onofrey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Aaron Onofrey', 18)}}的其他基金

Image Analysis Tools for mpMRI Prostate Cancer Diagnosis Using PI-RADS
使用 PI-RADS 进行 mpMRI 前列腺癌诊断的图像分析工具
  • 批准号:
    10256757
  • 财政年份:
    2018
  • 资助金额:
    $ 20.94万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 20.94万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 20.94万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 20.94万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 20.94万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 20.94万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 20.94万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 20.94万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 20.94万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 20.94万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.94万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了