Image Analysis Tools for mpMRI Prostate Cancer Diagnosis Using PI-RADS
使用 PI-RADS 进行 mpMRI 前列腺癌诊断的图像分析工具
基本信息
- 批准号:10256757
- 负责人:
- 金额:$ 80.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAgreementAlgorithmsAtlasesBenignBiopsyCancer DiagnosticsCancer EtiologyCategoriesCessation of lifeClassificationClinicalCollaborationsCommunicationComputer AssistedConsumptionDataData CollectionDatabasesDiagnosisDiagnosticDiffusionDiffusion Magnetic Resonance ImagingEnvironmentGoalsImageImage AnalysisImage EnhancementInformation SystemsInterobserver VariabilityIntraobserver VariabilityLabelLesionLettersLocalized LesionMagnetic Resonance ImagingMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of prostateManualsMapsMeta-AnalysisMethodologyMethodsModelingMonitorMultimodal ImagingPerformancePhaseProceduresProcessProstateProtocols documentationPsyche structureRadiologic FindingRadiology SpecialtyReaderReadingReportingReproducibilityResearchSiteSourceSpecific qualifier valueSpecificityStagingStandardizationSystemT2 weighted imagingTimeTrainingValidationVariantWorkWorkloadbasecancer diagnosisclinical decision supportclinical diagnosticsclinical imagingclinical practiceclinical research sitecommercializationcontrast enhanceddeep learningdesigndisease heterogeneityimage guidedimage registrationimaging biomarkerimprovedinnovationmachine learning algorithmmachine learning methodmedical specialtiesmenmortalitymultimodalitynovelprostate biopsyradiological imagingradiologistresearch clinical testingsupport toolstool
项目摘要
Project Summary
Prostate cancer is one of the most commonly occurring forms of cancer, accounting for 21% of all cancer in men.
The Prostate Imaging Reporting and Data System (PI-RADS) aims to standardize reporting of prostate cancer
using multi-parametric magnetic resonance imaging (mpMRI). However, the in-depth analysis, as demanded
by PI-RADS, remains challenging due to the complexity and heterogeneity of the disease, and it is a clinically
burdensome task subject to both significant intra- and inter-reader variability. Auxiliary tools based on machine
learning methods such as deep learning can reduce diagnostic variability and increase workload efficiency by
automatically performing tasks and presenting results to a radiologist for the purpose of decision support. In
particular, automated identification and classification of lesion candidates using imaging data can be performed
with respect to PI-RADS scoring. In Phase I of this project, we developed two automated methods to reduce the
intra- and inter-observer variability while interpreting mpMRI images using the PI-RADS protocol: (i) a method
to co-register mpMRI data, and (ii) a method to geometrically segment the prostate gland into the PI-RADS
protocol sector map. The overarching goal of this Phase II project is to develop machine learning algorithms that
incorporate both co-registered multi-modal imaging biomarkers and PI-RADS sector map information into an
automated clinical diagnostic aid. The innovation in this project lies in the use of deep learning to automatically
predict PI-RADS classification. This project is significant in that it has the potential to improve clinical efficiency
and reduce diagnostic variation in prostate cancer diagnosis. In Aim 1 of this project, we will develop a deep
learning approach to localize and classify lesions in mpMRI. In Aim 2, we will integrate this diagnostic tool into the
ProFuseCAD system and perform rigorous multi-site validation to quantify PI-RADS classification performance.
Both aims will utilize a database of over 1,000 existing mpMRI images from multiple clinical sites to develop and
validate the algorithms. Ultimately, enhancements from this project will create a novel feature for Eigen's (the
applicant company's) FDA 510(k)-cleared imaging product, ProFuseCAD, in order to improve the diagnosis and
reporting of prostate cancer.
项目摘要
前列腺癌是最常见的癌症之一,占男性所有癌症的21%。
前列腺成像报告和数据系统(PI-RADS)旨在规范前列腺癌的报告
使用多参数磁共振成像(mpMRI)。然而,根据要求,
由PI-RADS,仍然具有挑战性,由于疾病的复杂性和异质性,它是一个临床
繁重的任务受到读者内部和读者之间的显著差异的影响。基于机器的辅助工具
深度学习等学习方法可以通过以下方式减少诊断变异性并提高工作负载效率:
自动执行任务并将结果呈现给放射科医师以用于决策支持的目的。在
特别地,可以使用成像数据执行病变候选者的自动识别和分类
关于PI-RADS评分。在该项目的第一阶段,我们开发了两种自动化方法来减少
使用PI-RADS协议解释mpMRI图像时观察者内和观察者间的变异性:(i)一种方法
共配准mpMRI数据,以及(ii)将前列腺几何分割成PI-RADS的方法
协议扇区映射。这个第二阶段项目的首要目标是开发机器学习算法,
将共同配准多模态成像生物标记和PI-RADS扇区映射信息结合到
自动化临床诊断辅助设备。该项目的创新在于使用深度学习自动
预测PI-RADS分类。该项目的重要性在于它有可能提高临床效率
并减少前列腺癌诊断中的诊断变异。在本项目的目标1中,我们将开发一个深入的
学习mpMRI中病灶定位和分类的方法。在目标2中,我们将把这个诊断工具集成到
ProFuseCAD系统,并执行严格的多站点验证,以量化PI-RADS分类性能。
这两个目标都将利用来自多个临床研究中心的1,000多个现有mpMRI图像的数据库来开发和
验证算法。最终,该项目的增强功能将为Eigen的(
申请人公司)FDA 510(k)批准的成像产品ProFuseCAD,以改善诊断和
前列腺癌的治疗方法
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Aaron Onofrey其他文献
John Aaron Onofrey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Aaron Onofrey', 18)}}的其他基金
Data-driven Head Motion Correction in PET Imaging Using Deep Learning
使用深度学习在 PET 成像中进行数据驱动的头部运动校正
- 批准号:
10376855 - 财政年份:2020
- 资助金额:
$ 80.31万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 80.31万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 80.31万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 80.31万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 80.31万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 80.31万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 80.31万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 80.31万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 80.31万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 80.31万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 80.31万 - 项目类别:
Research Grant