New models and therapeutic approaches in alveolar rhabdomyosarcoma
肺泡横纹肌肉瘤的新模型和治疗方法
基本信息
- 批准号:10375518
- 负责人:
- 金额:$ 37.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAlveolar RhabdomyosarcomaAnimal ModelAutomobile DrivingBiological ModelsBiologyCRISPR/Cas technologyCell CountCell physiologyCellsChildChromosomal translocationClinicalComplexDevelopmentDiseaseDrug ScreeningEmbryonal RhabdomyosarcomaEventExperimental Animal ModelFDA approvedFOXO1A geneGene FusionGenesGoalsGrowthHeadHumanHuman Cell LineHuman GeneticsImageLabelLeadMalignant NeoplasmsModelingMolecularMusMutationNeoplasm MetastasisOncogenicOutcomePAX3 genePAX7 genePathway interactionsPatientsPharmaceutical PreparationsPredispositionPrognosisRelapseResearchRhabdomyosarcomaRoleSurvival RateTechnologyTestingTherapeuticTimeUnited StatesValidationWorkZebrafishcell typechildhood sarcomaexperimental studyimaging approachimaging modalityin vivoin vivo Modelinnovationmalignant muscle neoplasmneoplastic cellnovelnovel therapeuticspatient derived xenograft modelpreclinical efficacysarcomascreeningsuccesssurvival outcometargeted treatmenttherapeutic developmenttool developmenttranscription factortranslational impacttumortumor growth
项目摘要
PROJECT SUMMARY (30 lines)
Alveolar rhabdomyosarcoma (ARMS) is a common and aggressive muscle cancer that affects hundreds of
children annually in the United States. ARMS are pathognomonic with oncogenic chromosomal translocations
between the PAX genes and the fork-head transcription factor (FOXO1). Yet, the pathways that the PAX3/7-
FOXO1 transcription factors modulate, the tumor cells of origin, and the therapeutic vulnerabilities that arise in
ARMS cells is still unclear, largely due to lack of precision animal models that accurately recapitulate the same
translocation fusion events found in human ARMS. The long-term goal of our work is to uncover therapeutically
relevant pathways that drive ARMS growth. The overall objective of this application is to develop zebrafish
models of ARMS to identify therapeutic vulnerabilities that can be exploited clinically. Our central hypothesis is
that worse survival outcomes in PAX3-FOXO1+ ARMS are reflected in differences in cells of origin, elevated
numbers of molecular defined tumor-propagating cells (TPCs), and predisposition to metastasis. The feasibility
of our approach is supported by our work in using zebrafish to model a wide range of human cancers, recent
optimization of Crispr/CAS9 approaches to create patient-specific translocations using CRE/Lox, and our
successful high-content imaging screening approach to identify FDA approved drugs with efficacy in curbing
growth of other RMS subtypes. The rationale for our research is that there are few good experimental animal
models that accurately mimic the underlying genetics of human ARMS, obviating our ability to define how
specific oncogenic fusions drive cancer growth. This work is significant because it will uncover divergent
cellular mechanisms that account for differences in the clinical manifestation of PAX3/7-FOXO1+ ARMS,
identify new therapies to treat ARMS, and provide new modeling approaches for translocation+ cancers, all
expressed goals outlined in PA-16-251 supported by the Cancer Moonshot Initiative. Aim 1 will characterize
differences in PAX3/7-FOXO1-induced ARMS using innovative zebrafish models, testing our hypothesis that
fusion+ ARMS have inherent differences in proliferation and cell(s)-of-origin. Aim 2 will assess PAX3/7-FRKH
for differential effects on modulating metastasis and tumor propagating potential, testing our hypothesis that
PAX3-FOXO1+ ARMS do worse clinically because they have elevated TPC numbers and metastatic capacity.
Aim 3 will use an innovative high-content imaging screen to identify FDA-approved drugs that kill TPCs and
suppress growth of human ARMS. With respect to outcomes, our research will develop much-needed precision
animals models of ARMS and identify key differences in PAX3/7-FOXO1+ ARMS including likely differences in
cell-of-origin, TPCs, and metastatic capacity, providing explanation of why PAX3-FOXO1+ ARMS do worse
clinically. Our work will also identify novel therapies to kill TPCs in human patient derived xenografts (PDX).
This work is expected to have a positive translational impact by demonstrating the pre-clinical efficacy of
targeting TPCs in human ARMS and identifying new therapies for the treatment of this devastating cancer.
项目概要(30行)
腺泡状横纹肌肉瘤(ARMS)是一种常见的侵袭性肌肉癌,
每年在美国的孩子。ARMS与致癌性染色体易位有关
PAX基因和叉头转录因子(FOXO 1)之间的关系。然而,PAX 3/7-
FOXO 1转录因子调节肿瘤细胞的起源,以及肿瘤细胞中出现的治疗脆弱性。
ARMS细胞仍然不清楚,主要是由于缺乏精确的动物模型,准确地概括了相同的
在人类ARMS中发现的易位融合事件。我们工作的长期目标是从治疗上揭示
推动ARMS增长的相关途径。本申请的总体目标是开发斑马鱼
ARMS的模型,以确定可以在临床上利用的治疗漏洞。我们的核心假设是
PAX 3-FOXO 1 + ARMS中更差的生存结果反映在细胞来源的差异,
分子定义的肿瘤增殖细胞(TPC)的数量和转移倾向。可行性
我们的方法得到了我们使用斑马鱼来模拟各种人类癌症的工作的支持,
优化Crispr/CAS9方法,使用CRE/Lox创建患者特异性易位,以及我们的
成功的高内涵成像筛选方法,以确定FDA批准的药物,
其他RMS亚型的生长。我们研究的基本原理是很少有好的实验动物
精确模拟人类ARMS潜在遗传学的模型,排除了我们定义如何
特定的致癌融合驱动癌症生长。这项工作是有意义的,因为它将揭示不同的
解释PAX 3/7-FOXO 1 + ARMS临床表现差异的细胞机制,
确定治疗ARMS的新疗法,并为易位+癌症提供新的建模方法,
PA-16-251中概述的明确目标得到了癌症登月计划的支持。目标1将描述
PAX 3/7-FOXO 1诱导的ARMS的差异,使用创新的斑马鱼模型,测试我们的假设,
融合+ ARMS在增殖和细胞来源方面具有固有差异。目标2将评估PAX 3/7-FRKH
对于调节转移和肿瘤增殖潜力的不同作用,检验我们的假设,
PAX 3-FOXO 1 + ARMS在临床上表现更差,因为它们具有升高的TPC数量和转移能力。
Aim 3将使用创新的高内容成像屏幕来识别FDA批准的杀死TPC的药物,
抑制人类手臂的生长。关于结果,我们的研究将发展急需的精确性,
ARMS的动物模型,并确定PAX 3/7-FOXO 1 + ARMS的关键差异,包括
来源细胞、TPC和转移能力,解释了PAX 3-FOXO 1 + ARMS为什么表现更差
临床上我们的工作还将确定新的疗法来杀死人类患者来源的异种移植物(PDX)中的TPC。
这项工作预计将通过证明以下药物的临床前疗效产生积极的转化影响:
靶向人类ARMS中的TPC,并确定治疗这种毁灭性癌症的新疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Michael Langenau其他文献
David Michael Langenau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Michael Langenau', 18)}}的其他基金
Oncogenic Drivers of Rhabdomyosarcoma Cell State, Cancer Stem Cells and Metastasis
横纹肌肉瘤细胞状态、癌症干细胞和转移的致癌驱动因素
- 批准号:
10658091 - 财政年份:2023
- 资助金额:
$ 37.77万 - 项目类别:
Developing preclinical xenograft models in zebrafish.
在斑马鱼中开发临床前异种移植模型。
- 批准号:
10334672 - 财政年份:2022
- 资助金额:
$ 37.77万 - 项目类别:
Developing preclinical xenograft models in zebrafish.
在斑马鱼中开发临床前异种移植模型。
- 批准号:
10578692 - 财政年份:2022
- 资助金额:
$ 37.77万 - 项目类别:
Stem cell self-renewal programs in rhabdomyosarcoma
横纹肌肉瘤的干细胞自我更新计划
- 批准号:
10321242 - 财政年份:2018
- 资助金额:
$ 37.77万 - 项目类别:
New models and therapeutic approaches in alveolar rhabdomyosarcoma
肺泡横纹肌肉瘤的新模型和治疗方法
- 批准号:
9899960 - 财政年份:2018
- 资助金额:
$ 37.77万 - 项目类别:
Oncogenic pathways and therapeutic targets in T cell acute lymphoblastic leukemia
T细胞急性淋巴细胞白血病的致癌途径和治疗靶点
- 批准号:
10225314 - 财政年份:2017
- 资助金额:
$ 37.77万 - 项目类别:
Oncogenic pathways and therapeutic targets in T cell acute lymphoblastic leukemia
T细胞急性淋巴细胞白血病的致癌途径和治疗靶点
- 批准号:
9383339 - 财政年份:2017
- 资助金额:
$ 37.77万 - 项目类别:
Oncogenic pathways and therapeutic targets in T cell acute lymphoblastic leukemia
T细胞急性淋巴细胞白血病的致癌途径和治疗靶点
- 批准号:
9751256 - 财政年份:2017
- 资助金额:
$ 37.77万 - 项目类别:
Immune Compromised Zebrafish for Cell Transplantation
用于细胞移植的免疫受损斑马鱼
- 批准号:
10454455 - 财政年份:2013
- 资助金额:
$ 37.77万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 37.77万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 37.77万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 37.77万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 37.77万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 37.77万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 37.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 37.77万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 37.77万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 37.77万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 37.77万 - 项目类别:
Grant-in-Aid for Early-Career Scientists