Improving Virtual Gross Anatomy: Enhancing the Information Content of Cadaveric CT Scans

改善虚拟大体解剖:增强尸体 CT 扫描的信息内容

基本信息

  • 批准号:
    10377915
  • 负责人:
  • 金额:
    $ 3.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

Project Summary The long-term goal of this research is to establish a pipeline for automated image processing that enhances cadaveric non-contrast enhanced (NCE) CT data and extracts meaningful models and metrics to improve anatomy research and education. The objective is to develop the necessary toolset for this image processing, and feature extraction. The central hypothesis is that it is possible to enrich the information content of biomedical imaging data, particularly that of cadaveric NCE CT imaging, for use in gross anatomy education and research. The rationale behind this project is that cadaveric dissection, while an important part of anatomy education, is limited due to sample size, infrastructure, cost, and time. Biomedical imaging can preserve specimens for posterity and be used to supplement this material by providing statistical and quantitative information from anatomical structures. This research will attempt to establish a working pipeline for efficient information extraction through the following specific aims: (1) Improving inter-observer anatomical agreement in cadaveric CT scans; (2) Develop an approach to automatically segment anatomical structures from non-contrast enhanced CT images; and (3) Establish normal variation of anatomical structures and its relationship to pathologies. This project is innovative because it applies artificial intelligence to efficiently extract anatomical information from cadaveric NCE CT imaging, which has only been performed with traditional registration- dependent methods that often fail and are domain specific, acting on a single organ at a time. In addition, this project works with multi-species data to enhance human image data. This project is significant because it will allow students to understand anatomical variation better by both expanding student exposure to more samples, while also extracting useful representations and analytics from these samples for education and research. The expected outcome of this project is a toolset that is capable of enhancing anatomy education and research by increasing soft-tissue contrast, automatically segmenting the kidneys, liver, mandible, and intraosseus sites of the cranial nerves, and performing statistical analysis on these organs, including but not limited to statistical shape modelling and shape analysis. This will have a positive impact on anatomical education and student retention because it will provide students with a broader range of sample variability information which will decrease pervading biases in medical training that result from small, limited sample sizes, and improve medical training.
项目摘要 这项研究的长期目标是建立一条自动图像处理的管道,以增强 身体非对比增强(NCE)CT数据并提取有意义的模型和指标以改进 解剖学研究和教育。目标是开发用于该图像处理的必要工具集, 和特征提取。中心假设是有可能丰富生物医学的信息内容 影像数据,特别是身体NCE CT成像数据,用于大体解剖教学和研究。 这个项目背后的理论基础是,身体解剖,虽然是解剖学教育的重要组成部分,但 由于样本大小、基础设施、成本和时间的限制。生物医学成像可以将标本保存下来 并通过提供统计和定量信息来补充这一材料 解剖结构。这项研究将试图建立一条有效的信息提取工作流程 通过以下具体目标:(1)提高身体CT中观察者间的解剖学一致性 扫描;(2)开发一种自动将解剖结构从非对比中分割出来的方法 增强CT图像;以及(3)建立解剖结构的正常变异及其与 病理学。这个项目是创新的,因为它应用人工智能来高效地提取解剖结构 来自身体NCE CT成像的信息,这只是通过传统的配准进行的- 依赖的方法经常失败,并且是特定于领域的,一次作用于一个器官。此外,这一点 该项目使用多物种数据来增强人体图像数据。 这个项目很有意义,因为它将让学生更好地理解解剖变异 扩大学生接触更多样本的机会,同时还从 这些样本用于教育和研究。该项目的预期结果是一个工具集,能够 通过增加软组织对比度、自动分割 肾脏、肝脏、下颌骨和脑神经的骨内部位,并对这些部位进行统计分析 器官,包括但不限于统计形状建模和形状分析。这将会有一个积极的 对解剖学教育和留学生的影响,因为它将为学生提供更广泛的 样本可变性信息将减少医学培训中的普遍偏差, 限制样本数量,并改进医疗培训。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Lewis其他文献

Steven Lewis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 3.15万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 3.15万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了