Computational Core

计算核心

基本信息

  • 批准号:
    10377370
  • 负责人:
  • 金额:
    $ 30.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY: COMPUTATIONAL CORE The purpose of the COMPUTATIONAL CORE is to provide services for infrastructure and conceptual support to integrate the four Projects that form our Center. To do this, the Core will ensure that the trial-by-trial behavioral data collected from the four Projects (from the computationally informative DPX and Bandit tasks) are analyzed in a uniform and compatible manner, so that findings across Projects can be compared and modeled. It will also supply overall statistical support to ensure that statistical analyses are done appropriately. The Core consists of a Service Aim and a Modeling Aim. In the Service Aim, we propose to apply causal discovery analyses, a recently developed toolkit of mathematical algorithms that can infer explanatory relationships between co-occurring data parameters. Causal discovery analyses serve as a powerful inferential toolbox that can be applied to all of the PROJECTS independently, facilitating the generation of new hypotheses within and across PROJECTS. In the Modeling Aim, the Core will provide conceptual and modeling support for the theoretical underpinning of state representation dysfunctions relevant to psychosis. As noted in the OVERALL RESEARCH STRATEGY, we take a central computational perspective to translate across species and methodologies, using theoretical constructs to bridge the gap between neural dysfunction and observable manifestations of that dysfunction. To this end, the Core will integrate two existing models: an Algorithmic-Level Model that translates attractor dynamics to behavior, and a Neurophysiology-Level Model that translates neuronal properties to attractor dynamics. Our goal is to examine how neuronal-scale effects, such as those seen in the non-human animal projects (PROJECTS 1 & 2) translate into observable behavioral and neurophysiological effects in healthy and clinical populations, such as those seen in the human projects (PROJECTS 3 & 4), by merging these two models into an integrated model crossing levels, that can provide mechanistic explanatory power for how neurophysiological effects produce attractor dynamics that lead to behavioral outcomes.
项目摘要:计算核心 计算核心的目的是为基础设施和概念支持提供服务 整合组成我们中心的四个项目。为了做到这一点,核心将确保逐一审判 从四个项目收集的行为数据(从提供计算信息的DPX和Bandit任务中收集) 以统一和兼容的方式进行分析,以便跨项目的结果可以进行比较 模特儿。它还将提供全面的统计支助,以确保适当地进行统计分析。 核心由服务目标和建模目标组成。在服务目标中,我们建议应用因果关系 发现分析,这是最近开发的一个数学算法工具包,可以推断解释 共现数据参数之间的关系。因果发现分析是一种强大的 可独立应用于所有项目的推理工具箱,便于生成新的 项目内部和项目之间的假设。在建模目标中,核心将提供概念性和 与精神病相关的国家表征功能障碍的理论基础的模型支持。 正如在总体研究战略中所指出的,我们采取了中心计算的观点来翻译 跨物种和方法,使用理论构造来弥合神经功能障碍之间的差距 以及这种功能障碍的明显表现。为此,核心将整合现有的两个模型: 将吸引子动力学转化为行为的算法级模型和神经生理学级模型 这将神经元的特性转化为吸引子的动力学。我们的目标是研究神经元尺度的影响, 例如在非人类动物项目(项目1和2)中看到的那些转化为可观察到的行为 以及在健康和临床人群中的神经生理效应,例如在人类项目中看到的那些 (项目3和4),通过将这两个模型合并为一个跨级别的综合模型,可以提供 对神经生理效应如何产生吸引子动力学的机械解释力 行为结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

A DAVID REDISH其他文献

A DAVID REDISH的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('A DAVID REDISH', 18)}}的其他基金

Dysfunctional State Representations in Psychosis: From Neurophysiology to Neuroplasticity-based Treatment
精神病中的功能障碍状态表征:从神经生理学到基于神经可塑性的治疗
  • 批准号:
    10377362
  • 财政年份:
    2020
  • 资助金额:
    $ 30.21万
  • 项目类别:
Computational Core
计算核心
  • 批准号:
    10597084
  • 财政年份:
    2020
  • 资助金额:
    $ 30.21万
  • 项目类别:
Dysfunctional State Representations in Psychosis: From Neurophysiology to Neuroplasticity-based Treatment
精神病中的功能障碍状态表征:从神经生理学到基于神经可塑性的治疗
  • 批准号:
    10597064
  • 财政年份:
    2020
  • 资助金额:
    $ 30.21万
  • 项目类别:
Predoctoral Training of Neuroscientists
神经科学家的博士前培训
  • 批准号:
    10414079
  • 财政年份:
    2018
  • 资助金额:
    $ 30.21万
  • 项目类别:
Predoctoral Training of Neuroscientists
神经科学家的博士前培训
  • 批准号:
    10189718
  • 财政年份:
    2018
  • 资助金额:
    $ 30.21万
  • 项目类别:
Using Computation to Achieve Breakthroughs in Neuroscience
利用计算实现神经科学的突破
  • 批准号:
    10437791
  • 财政年份:
    2018
  • 资助金额:
    $ 30.21万
  • 项目类别:
Predoctoral Training of Neuroscientists
神经科学家的博士前培训
  • 批准号:
    10626176
  • 财政年份:
    2018
  • 资助金额:
    $ 30.21万
  • 项目类别:
Testing hybrid theories of action-selection
测试行动选择的混合理论
  • 批准号:
    10605295
  • 财政年份:
    2017
  • 资助金额:
    $ 30.21万
  • 项目类别:
Resolving conflicts between decision-making algorithms
解决决策算法之间的冲突
  • 批准号:
    9284763
  • 财政年份:
    2017
  • 资助金额:
    $ 30.21万
  • 项目类别:
Testing hybrid theories of action-selection
测试行动选择的混合理论
  • 批准号:
    10441653
  • 财政年份:
    2017
  • 资助金额:
    $ 30.21万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 30.21万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.21万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 30.21万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.21万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 30.21万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.21万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 30.21万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 30.21万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 30.21万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.21万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了