How Molecular Motors Work Together to Move Cargo: Nanometer Distances and Piconewton Forces
分子马达如何协同工作来移动货物:纳米距离和皮牛顿力
基本信息
- 批准号:10377346
- 负责人:
- 金额:$ 30.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAffinityAlzheimer&aposs DiseaseAutomobile DrivingBackBehaviorBindingBiological AssayBombyxBuffersBypassCellsCommunicationCoupledCrowdingDNADataDiffuseDiseaseDynein ATPaseEnvironmentEquilibriumEukaryotic CellFaceFamilyFilamentFluorescenceFutureHumanIn VitroIndividualIntermediate FilamentsKinesinLabelLettersMeasuresMicrofilamentsMicrotubule-Associated ProteinsMicrotubulesModelingModificationMolecular MotorsMotionMotorMovementMutationNerve DegenerationParkinson DiseasePeptidesPolymersPositioning AttributePropertyProtocols documentationQuantum DotsRegulationReportingResistanceSaltsSeriesSodium ChlorideSpeedSpidersStreptavidinTechniquesTestingTimeTravelTubulinWorkYeastsbasedensityexperimental studyimprovedin vitro Assayin vivoinnovationinsightnanometernanometer resolutionpublic health relevancerecruitsensorsingle molecule
项目摘要
Abstract
Significance: How cytoplasmic cargoes move within a crowded cell, over long distances and speeds that are
nearly the same as when moving in a simple buffer, has long been mysterious. Roadblocks, detours and the
dense environment apparently do not, on average, slow the cargoes as they move around the cell. Here we
report a simple mechanism, based on a new type of in vitro force-gliding assay, where multiple motors operate
simultaneously on a common cargo and their forces combine. The cargo is a microtubule that is transported
above a series of randomly placed, but far-apart motors that are fixed to a coverslip through a spring. The cargo’s
position and velocity are measured via fluorescence; the force of each motor is measured with piconewton
accuracy over many minutes by measuring the displacement from equilibrium. For the first time, we have
managed to develop an assay to quantitatively measure multiple motors, as opposed to single motors.
Tension is the key to communication. One motor creates tension on the microtubule filament that is felt by
other motors on the same microtubule. When the microtubule faces an obstacle, the tension increases and more
motors get activated to bypass the roadblock. Alternatively, the motor facing the highest resistance lets go,
allowing the microtubule to locally diffuse and take a new path. A sharing of force between the motors is critical.
The idea is that multiple motors allow the cargo’s speed to be roughly constant in the absence or presence of
roadblocks and detours; however, with these impediments, the forces of multiple motors add together, allowing
the cargo to smoothly travel through—or around—the obstacles. Examples of roadblocks/detours include
different microtubule-associated proteins (MAPs) that can come on and off, as well as actin and intermediate
filaments.
We use multiple mammalian kinesins or multiple yeast dyneins, and in the future, we will employ multiple
kinesins and multiple human cytoplasmic dyneins, the latter experiment asking the question of how, or if, these
two opposite-directed families of motors compete or cooperate with each other. We have preliminary data for
multiple kinesins and find that they are good sharers and dynamically come on and off the microtubule. We also
have data for multiple yeast dyneins, as well as for kinesin and yeast dynein. We find that the molecular motors
vary between “hindering” and “driving” positions, which dynamically change as a function of roadblocks. We will
also simulate in vivo settings, where, for example, salt concentration and competing filaments are high, or the
availability of free motors is limited.
The technique presented here is also innovative. Our technique will involve measuring single molecule
fluorescence with nanometer resolution; it will involve measuring forces in the piconewton range based on
fluorescence using a unique worm-like-chain of either DNA or Polyethyleneglycol with a spider silkworm tension
sensor; it will involve measuring multiple motors that all act individually yet work on a single cargo.
摘要
意义:细胞质货物如何在拥挤的细胞内移动,在很长的距离和速度下
几乎和在一个简单的缓冲区中移动时一样,长期以来一直是个谜。路障、弯路和
平均而言,密集的环境显然不会减缓货物在细胞内移动的速度。在这里我们
报告一种简单的机制,基于一种新型的体外力量滑动测试,其中多个马达运行
同时在一个共同的货物和他们的力量结合。货物是运输的微管。
上面是一系列随机放置但相距很远的电机,这些电机固定在盖子上,穿过弹簧。货物是
位置和速度是通过荧光测量的;每个马达的力是用皮牛顿测量的
通过测量偏离平衡的位移,在多分钟内保持精度。第一次,我们有了
成功地开发了一种定量测量多台发动机的方法,而不是单一的发动机。
紧张是沟通的关键。一个马达在微管细丝上产生张力,由
同一微管上的其他马达。当微管面对障碍物时,张力就会增加。
马达被激活以绕过路障。或者,面对最高阻力的电机松开,
允许微管局部扩散并走一条新的路径。电机之间的力的分配至关重要。
其想法是,多个马达允许货物的速度在没有或存在的情况下大致恒定
路障和弯路;然而,有了这些障碍,多个马达的力加在一起,就可以
货物顺利通过或绕过障碍物。路障/绕道的例子包括
不同的微管相关蛋白(MAP)可以开启和关闭,以及肌动蛋白和中间体
细丝。
我们使用多个哺乳动物动蛋白或多个酵母动力蛋白,未来我们将使用多个
激动素和多个人类胞浆动力蛋白,后者的实验询问了这些是如何或是否
两个方向相反的马达家族相互竞争或合作。我们有初步数据显示
多种动蛋白,并发现它们是很好的共享者,并动态地在微管上来来去去。我们也
有多种酵母动力蛋白的数据,以及动蛋白和酵母动力蛋白的数据。我们发现分子马达
在“阻碍”和“驾驶”位置之间变化,随着路障的变化而动态变化。我们会
也可以模拟体内环境,例如,盐浓度和竞争的细丝很高,或者
免费马达的供应是有限的。
这里介绍的技术也是创新的。我们的技术将包括测量单分子
纳米分辨率的荧光;它将涉及测量皮牛顿范围内的力,基于
利用独特的蠕虫状DNA链或聚乙二醇链与蜘蛛丝张力进行荧光
传感器;它将涉及测量多个马达,这些马达都单独作用于单个货物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PAUL R SELVIN其他文献
PAUL R SELVIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PAUL R SELVIN', 18)}}的其他基金
How Molecular Motors Work Together to Move Cargo: Nanometer Distances and Piconewton Forces
分子马达如何协同工作来移动货物:纳米距离和皮牛顿力
- 批准号:
9905534 - 财政年份:2019
- 资助金额:
$ 30.13万 - 项目类别:
Small Quantum Dots for Super-Resolution of Neuronal Sub-Synaptic Structures
用于神经元亚突触结构超分辨率的小量子点
- 批准号:
8683516 - 财政年份:2014
- 资助金额:
$ 30.13万 - 项目类别:
Measuring the Opening of the Mechanosensitive Channel through smFRET & Molecular
通过 smFRET 测量机械敏感通道的开口
- 批准号:
8760792 - 财政年份:2014
- 资助金额:
$ 30.13万 - 项目类别:
Small Quantum Dots for Super-Resolution of Neuronal Sub-Synaptic Structures
用于神经元亚突触结构超分辨率的小量子点
- 批准号:
8804970 - 财政年份:2014
- 资助金额:
$ 30.13万 - 项目类别:
Fluorescence Changes in Shaker Potassium lon Channel
摇床钾离子通道的荧光变化
- 批准号:
7476560 - 财政年份:2005
- 资助金额:
$ 30.13万 - 项目类别:
Fluorescence Changes in Shaker Potassium lon Channel
摇床钾离子通道的荧光变化
- 批准号:
6955608 - 财政年份:2005
- 资助金额:
$ 30.13万 - 项目类别:
Fluorescence Changes in Shaker Potassium lon Channel
摇床钾离子通道的荧光变化
- 批准号:
7099592 - 财政年份:2005
- 资助金额:
$ 30.13万 - 项目类别:
Fluorescence Changes in Shaker Potassium lon Channel
摇床钾离子通道的荧光变化
- 批准号:
7286067 - 财政年份:2005
- 资助金额:
$ 30.13万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 30.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 30.13万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 30.13万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 30.13万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 30.13万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 30.13万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 30.13万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 30.13万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 30.13万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 30.13万 - 项目类别:
Continuing Grant














{{item.name}}会员




