Measuring the Opening of the Mechanosensitive Channel through smFRET & Molecular
通过 smFRET 测量机械敏感通道的开口
基本信息
- 批准号:8760792
- 负责人:
- 金额:$ 29.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:AntibioticsArrhythmiaAustraliaBacteriaBehaviorBinding ProteinsBiophysicsBlood PressureBuffaloesCaliberCell VolumesCellsCollaborationsComplexCysteineCytoplasmic TailDNA Sequence RearrangementDataDerivation procedureEnergy TransferEquilibriumErythrocytesEscherichia coliFluid BalanceFluorescenceFluorescence Resonance Energy TransferGeometryGliomaHomology ModelingIllinoisInstitutesIon ChannelLabelLengthLifeLightLipidsMammalian CellMeasuresMembraneMigraineModalityModelingMolecularMolecular ConformationMovementMuscular DystrophiesMutationMycobacterium tuberculosisNail plateNeoplasm MetastasisPainPositioning AttributePotassium ChannelProbabilityProcessProtein ConformationProteinsRelative (related person)ResolutionSensoryShapesSimulateSiteSourceStructureTechniquesTestingTimeTouch sensationValidationWateranalogbaseflexibilityhuman diseasemillisecondmolecular dynamicsmonomermutantnanometerpatch clamppreventpublic health relevanceresearch studyresponsesimulationsingle moleculesingle-molecule FRETsolutesoundtumorvirtualwater flow
项目摘要
DESCRIPTION (provided by applicant): Mechanosensitive ion channels (MSCs) are membrane-bound proteins that let water and solute molecules flow in and out of the cell in response to membrane deformation (23). They are essential to life by letting the cell respond to osmotic changes (24). Eukaryotic MSCs are involved in sensory modalities, like touch, sound, fluid balance, and blood pressure (15,25). Problems with these channels are implicated in cardiac arrhythmia, muscular dystrophy, glioma, pathological pain, neurovestibular disturbances, and tumour metastasis (13,26- 28). MSCs (of large conductance, MscL, and of small conductance, MscS) from bacteria are best understood. This may aid in attacking bacteria via antibiotics (29) and may help understand the eukaryotic MSCs, which are poorly characterized (30). Yet vital information about the bacterial MSCs and especially eukaryotic MSCs, are missing. For the bacterial channels, the MscL channel has been crystallized in the closed form, but not in the open form (31). The open pore of the MscL has been experimentally tested via several ensemble techniques, including EPR and ensemble FRET, but systematic errors likely result in an overestimation (32), or an underestimation (33,34), or have not been sensitive to the requisite distances (35). We propose to study the open and closed states of MscL using single molecule fluorescence energy transfer (smFRET), a technique I helped to invent (36,37). This will be supplemented with molecular dynamics, led by Klaus Schulten (U. Illinois, Urbana-Champaign) (38,39) who has studied the MscL/MscS channels (1,3,4,6,7). Our other collaborator, Boris Martinac (Victor Chang Institute, Australia) has extensively studied the MscL/MscS (32-35,40-46). We will study how the MscL opens. The leading candidates are the barrel-stave model, with one transmembrane helices (TM1) moving, and the helix-tilt model (47), with two helices (TM1 and TM2) moving. (47). We have formed the MscL channel in both the open and closed state, and find that smFRET indicates that both helices move, leading to a change in the pore diameter of 2.8 nm. We therefore argue strongly for the helix-tilt model. We also propose to study the behavior of the cytoplasmic (CP) helix, a source of significant controversy (48,49). We have preliminary smFRET data, which argues that the CP domain is dissociated. Furthermore, we propose to investigate the interaction between the channel and its surrounding membrane by studying the conformational dynamics of the channel using a mutant (G22N) (49) which spontaneously opens and closes. We also propose to investigate the process of channel opening by independent MD simulations for which we have successfully simulated the opening of the pore by forcing water through the channel. Finally, in collaboration with Philip Gottlieb, SUNY, Buffalo, we have preliminary results on a huge (>1 MD) eukaryotic MSC, called (tetrameric) Piezo1 (12,30,50). We use both SimPull (17) to isolate a single channel, and super-resolution fluorescence techniques, gSHRImP (18,51) and SHREC (19) (derived from my FIONA technique (20)), to study select positions. Results suggest that the N-to-N distance of the tetramer is ~52 nm.
描述(由申请人提供):机械敏感离子通道(MSCs)是一种膜结合蛋白,可以使水和溶质分子在响应膜变形时进出细胞(23)。它们通过让细胞对渗透变化作出反应,对生命至关重要。真核间充质干细胞参与感觉方式,如触觉、声音、液体平衡和血压(15,25)。这些通道的问题与心律失常、肌肉萎缩、胶质瘤、病理性疼痛、神经前庭紊乱和肿瘤转移有关(13,26- 28)。来自细菌的间充质干细胞(大电导的,MSCs,和小电导的,MSCs)是最好的理解。这可能有助于通过抗生素攻击细菌(29),并可能有助于了解真核间充质干细胞(30)。然而,关于细菌间充质干细胞,特别是真核间充质干细胞的重要信息仍然缺失。对于细菌通道,MscL通道以封闭形式结晶,而不是以开放形式结晶(31)。MscL的开放孔已经通过几种集合技术进行了实验测试,包括EPR和集合FRET,但系统误差可能导致高估(32),或低估(33,34),或者对必要的距离不敏感(35)。我们建议使用我帮助发明的单分子荧光能量转移(smFRET)技术来研究MscL的开放和封闭状态(36,37)。这将辅以分子动力学,由Klaus Schulten (U. Illinois, Urbana-Champaign)领导(38,39),他研究了MscS /MscS通道(1,3,4,6,7)。我们的另一位合作者,Boris Martinac(澳大利亚Victor Chang研究所)对MscL/MscS进行了广泛的研究(32-35,40-46)。我们将研究msc是如何开放的。主要的候选模型是桶-壁模型,其中一个跨膜螺旋(TM1)移动,螺旋-倾斜模型(47),其中两个螺旋(TM1和TM2)移动。(47)。我们在打开和关闭状态下形成了MscL通道,发现smFRET表明两个螺旋都移动,导致孔径变化2.8 nm。因此,我们强烈支持螺旋倾斜模型。我们还建议研究细胞质(CP)螺旋的行为,这是一个重大争议的来源(48,49)。我们有初步的smFRET数据,这表明CP域是游离的。此外,我们建议通过使用一个自发打开和关闭的突变体(G22N)(49)研究通道的构象动力学来研究通道与其周围膜之间的相互作用。我们还建议通过独立的MD模拟来研究通道打开的过程,我们已经成功地通过强迫水通过通道来模拟孔的打开。最后,在与Philip Gottlieb,纽约州立大学布法罗分校的合作中,我们对一个巨大的(bbbb1 MD)真核MSC,称为(四聚体)Piezo1(12,30,50)有了初步结果。我们使用SimPull(17)来分离单通道,并使用超分辨率荧光技术gSHRImP(18,51)和SHREC(19)(源自我的FIONA技术(20))来研究选择位置。结果表明,该四聚体的n - n距离为~52 nm。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PAUL R SELVIN其他文献
PAUL R SELVIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PAUL R SELVIN', 18)}}的其他基金
How Molecular Motors Work Together to Move Cargo: Nanometer Distances and Piconewton Forces
分子马达如何协同工作来移动货物:纳米距离和皮牛顿力
- 批准号:
10377346 - 财政年份:2019
- 资助金额:
$ 29.04万 - 项目类别:
How Molecular Motors Work Together to Move Cargo: Nanometer Distances and Piconewton Forces
分子马达如何协同工作来移动货物:纳米距离和皮牛顿力
- 批准号:
9905534 - 财政年份:2019
- 资助金额:
$ 29.04万 - 项目类别:
Small Quantum Dots for Super-Resolution of Neuronal Sub-Synaptic Structures
用于神经元亚突触结构超分辨率的小量子点
- 批准号:
8683516 - 财政年份:2014
- 资助金额:
$ 29.04万 - 项目类别:
Small Quantum Dots for Super-Resolution of Neuronal Sub-Synaptic Structures
用于神经元亚突触结构超分辨率的小量子点
- 批准号:
8804970 - 财政年份:2014
- 资助金额:
$ 29.04万 - 项目类别:
Fluorescence Changes in Shaker Potassium lon Channel
摇床钾离子通道的荧光变化
- 批准号:
6955608 - 财政年份:2005
- 资助金额:
$ 29.04万 - 项目类别:
Fluorescence Changes in Shaker Potassium lon Channel
摇床钾离子通道的荧光变化
- 批准号:
7476560 - 财政年份:2005
- 资助金额:
$ 29.04万 - 项目类别:
Fluorescence Changes in Shaker Potassium lon Channel
摇床钾离子通道的荧光变化
- 批准号:
7099592 - 财政年份:2005
- 资助金额:
$ 29.04万 - 项目类别:
Fluorescence Changes in Shaker Potassium lon Channel
摇床钾离子通道的荧光变化
- 批准号:
7286067 - 财政年份:2005
- 资助金额:
$ 29.04万 - 项目类别:
相似海外基金
DEVELOPING A HUMAN STEM CELL-DERIVED HEART MODEL TO CHARACTERIZE A NOVEL ARRHYTHMIA SYNDROME
开发人类干细胞衍生的心脏模型来表征新型心律失常综合征
- 批准号:
495592 - 财政年份:2023
- 资助金额:
$ 29.04万 - 项目类别:
Preliminary Study to Establish Heavy Ion Ablation Therapy for Lethal Ventricular Arrhythmia
重离子消融治疗致死性室性心律失常的初步研究
- 批准号:
23K14885 - 财政年份:2023
- 资助金额:
$ 29.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Arrhythmia Mechanisms Modulated by Intercalated Disc Extracellular Nanodomains
闰盘细胞外纳米结构域调节心律失常的机制
- 批准号:
10668025 - 财政年份:2023
- 资助金额:
$ 29.04万 - 项目类别:
Development of a next-generation telemonitoring system for prognostic prediction of the onset of heart failure and arrhythmia
开发下一代远程监测系统,用于心力衰竭和心律失常发作的预后预测
- 批准号:
23K09597 - 财政年份:2023
- 资助金额:
$ 29.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The role of inflammation in the pathogenesis of atrial fibrillation: Implications for atrial remodeling pathophysiology and for early atrial arrhythmia recurrences following radiofrequency ablation and pulsed field ablation
炎症在心房颤动发病机制中的作用:对心房重塑病理生理学以及射频消融和脉冲场消融后早期房性心律失常复发的影响
- 批准号:
514892030 - 财政年份:2023
- 资助金额:
$ 29.04万 - 项目类别:
WBP Fellowship
Improved arrhythmia ablation via MR-guided robotic catheterization and multimodal clinician feedback
通过 MR 引导的机器人导管插入术和多模式临床医生反馈改善心律失常消融
- 批准号:
10638497 - 财政年份:2023
- 资助金额:
$ 29.04万 - 项目类别:
Prototype development and validation of soft robotic sensor arrays for mapping cardiac arrhythmia
用于绘制心律失常的软机器人传感器阵列的原型开发和验证
- 批准号:
10722857 - 财政年份:2023
- 资助金额:
$ 29.04万 - 项目类别:
The role N-terminal acetylation in dilated cardiomyopathy and associated arrhythmia
N-末端乙酰化在扩张型心肌病和相关心律失常中的作用
- 批准号:
10733915 - 财政年份:2023
- 资助金额:
$ 29.04万 - 项目类别:
A novel regulator of Ca2+ homeostasis and arrhythmia susceptibility
Ca2 稳态和心律失常易感性的新型调节剂
- 批准号:
10724935 - 财政年份:2023
- 资助金额:
$ 29.04万 - 项目类别:
Novel Stellate Ganglia Chemo-ablation Approach to Treat Cardiac Arrhythmia and Cardiac Remodeling in Heart Failure
新型星状神经节化疗消融方法治疗心律失常和心力衰竭心脏重塑
- 批准号:
10727929 - 财政年份:2023
- 资助金额:
$ 29.04万 - 项目类别:














{{item.name}}会员




