Activity-Based DNA-Encoded Library Technology
基于活动的 DNA 编码文库技术
基本信息
- 批准号:10380694
- 负责人:
- 金额:$ 37.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AntibioticsAntineoplastic AgentsAntiviral AgentsBindingBiological AssayBypassCCR5 geneCell Culture TechniquesCellsCellular AssayChemicalsCholesterolCollectionDNAData SetDiseaseDrug TargetingEngineeringEnsureFundingGenesGenomeHIVHumanHuman GenomeHuman Genome ProjectIn VitroInvestmentsLaboratoriesLibrariesManualsMedicineMethodsMicrofluidicsModalityNamesPeptide Signal SequencesPharmaceutical PreparationsPhasePlayPolymersProcessProtein BiosynthesisProteinsProteomeRibosomesSiteSolidSourceStructureSurfaceSystemTechnologyTranslatingTranslationsVisionbasecellular engineeringclinically relevantdesigndrug discoveryexperimental studyhigh throughput screeninghuman diseasehypercholesterolemiainstrumentationnew therapeutic targetnovelnovel therapeutic interventionprogramsprotein expressionribosome profilingscale upscreeningsmall moleculesynthetic biologytechnology developmenttissue culturetranslation assay
项目摘要
Project Summary
The vast majority of the human proteome is considered “undruggable.” Undruggable proteins may be difficult
to express, lack surface binding clefts, do not have corresponding activity assays, or some combination thereof.
This concept is symptomatic of a major liability of contemporary drug discovery, which requires significant
investment to generate and scale up protein expression or cell culture and engineering an activity assay for
every new target. It may be possible to bypass these bottlenecks by directly targeting translation intermediates,
or “ribosome nascent chains” (RNCs), with small molecules that selectively inhibit protein synthesis by
interacting with an RNC and stalling translation. RNCs represent a vast source of new drug targets that do not
follow the rules of druggability, but high-throughput screens for RNC-targeting “Selective Terminators of
Protein Synthesis” (SToPS) have been roundly unsuccessful due to the limited scope of structures in standard
compound screening decks. During the previously funded project, our instrumentation and systems
engineering laboratory developed solid-phase DNA-encoded library (DEL) synthesis methods and microfluidic
DEL screening technology that collectively enabled unprecedented activity-based screens on these large
collections of novel chemical matter. We demonstrated that this platform can efficiently search DELs of
drug-like small molecules to identify novel bioactive molecules for several clinically relevant drug targets. The
proposed MIRA program will leverage our activity-based DEL screening capabilities to establish a SToPS
discovery platform through two parallel technology development initiatives. The first is a synthetic
biology-driven microfluidic droplet-scale in vitro translation-based approach to identifying small molecule
SToPS of a specific target RNC. The second is a polymer/tissue culture engineering approach that will explore
cellular assays of translation stalling, the screening format that identified the original examples of SToPS
targeting the hypercholesterolemia-associated protein, PCSK9. Both approaches will benefit from DEL-based
chemical diversity, which can be designed to explore chemical space known to elicit ribosome binding and
selective translation stalling. Cellular DEL screening technology will ensure that screening hits are cell active,
and more broadly will deliver a long-sought screening modality to the field of drug discovery. Following
proof-of-concept SToPS screens, we will develop computational workflows that mine publicly available
ribosome profiling data sets to predict candidate stall sites for SToPS screening, tackling CCR5 (anti-HIV) and
the bacterial signal sequence as examples of undruggable targets. We envision a completely plug-and-play
chemical probe discovery strategy for translating human genome sequence directly into SToPS as chemical
probes, thereby fulfilling the original vision of the Human Genome Project and eliminating “undruggable” from
the drug discovery lexicon.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian M Paegel其他文献
Brian M Paegel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian M Paegel', 18)}}的其他基金
Activity-Based DNA-Encoded Library Technology
基于活动的 DNA 编码文库技术
- 批准号:
10553645 - 财政年份:2021
- 资助金额:
$ 37.87万 - 项目类别:
High-Throughput Droplet-Scale Functional Screening of DNA-Encoded Combinatorial Libraries
DNA 编码组合文库的高通量液滴规模功能筛选
- 批准号:
10004373 - 财政年份:2017
- 资助金额:
$ 37.87万 - 项目类别:
Evolving and Engineering New Protease Tools for Mass Spectrometry Proteomics
改进和设计用于质谱蛋白质组学的新蛋白酶工具
- 批准号:
8146419 - 财政年份:2011
- 资助金额:
$ 37.87万 - 项目类别:
Microfluidic Processors for Directed Evolution and Synthetic Biology
用于定向进化和合成生物学的微流体处理器
- 批准号:
7724567 - 财政年份:2007
- 资助金额:
$ 37.87万 - 项目类别:
Microfluidic Processors for Directed Evolution and Synthetic Biology
用于定向进化和合成生物学的微流体处理器
- 批准号:
7360526 - 财政年份:2007
- 资助金额:
$ 37.87万 - 项目类别:
Microfluidic Processors for Directed Evolution and Synthetic Biology
用于定向进化和合成生物学的微流体处理器
- 批准号:
7740143 - 财政年份:2007
- 资助金额:
$ 37.87万 - 项目类别:
Microfluidic Processors for Directed Evolution and Synthetic Biology
用于定向进化和合成生物学的微流体处理器
- 批准号:
7994827 - 财政年份:2007
- 资助金额:
$ 37.87万 - 项目类别:
相似海外基金
Delays in Acquisition of Oral Antineoplastic Agents
口服抗肿瘤药物的获取延迟
- 批准号:
9975367 - 财政年份:2020
- 资助金额:
$ 37.87万 - 项目类别:
Eliminate the difficulty of venous puncture in patients receiving antineoplastic agents - Development of a new strategy for the prevention of induration-
消除接受抗肿瘤药物的患者静脉穿刺的困难 - 制定预防硬结的新策略 -
- 批准号:
16K11932 - 财政年份:2016
- 资助金额:
$ 37.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of the antineoplastic agents inhibiting DNA replication and their applications to cancer patient treatmen
抗肿瘤药物抑制DNA复制的分子机制及其在癌症患者治疗中的应用
- 批准号:
19591274 - 财政年份:2007
- 资助金额:
$ 37.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
PNET EXPERIMENTAL THERAPEUTICS--ANTINEOPLASTIC AGENTS AND TREATMENT DELIVERY
PNET 实验治疗——抗肿瘤药物和治疗实施
- 批准号:
6346309 - 财政年份:2000
- 资助金额:
$ 37.87万 - 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
- 批准号:
2885074 - 财政年份:1999
- 资助金额:
$ 37.87万 - 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
- 批准号:
6174221 - 财政年份:1999
- 资助金额:
$ 37.87万 - 项目类别:














{{item.name}}会员




