Mechanisms of Physiologic and Pathologic Osteoclastogenesis
破骨细胞发生的生理和病理机制
基本信息
- 批准号:10380048
- 负责人:
- 金额:$ 33.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlanineAutophagocytosisBindingBiochemicalBone MarrowCell physiologyCellsComplexCuesDiseaseElementsExposure toFeedbackGenesHomeostasisIL6 geneImpairmentIn VitroInflammationInflammation MediatorsInflammatoryInterferonsJointsKnock-inKnock-in MouseKnowledgeLeadLysineMediatingModalityModelingModificationMolecularMolecular ProfilingMolecular TargetMusMutateMutationMutation AnalysisMyelogenousNF-kappa BNuclearOsteoclastsOsteolysisOsteopeniaOutcomePathologicPathologyPathway interactionsPhosphotransferasesPhysiologicalPolyubiquitinationPost-Translational Protein ProcessingProcessProductionProteinsProteomicsRegulationResearchRoleSideSignal PathwaySignal TransductionSignaling MoleculeSignaling ProteinSiteSkeletal DevelopmentSpecificityStimulusSumoylation PathwaySystemTNF geneUbiquitin Like Proteinsbasebonebone losscell typecombatcytokineexperimental studygain of functionin vivojoint destructionlong bonemacrophagemonocytemutantnovelnovel therapeuticsosteoclast progenitorosteoclastogenesisprotein complexrecruitresponsescaffoldskeletalsubchondral bonetargeted treatmenttranscription factor
项目摘要
ABSTRACT:
The transcription factor NF-kB is expressed ubiquitously in all cell types and is readily activated by numerous
factors and cytokines. Baseline NF-kB activity is essential for skeletal development and physiologic cellular
functions. In contrast, its exacerbated and often uncontrolled activity during inflammation leads to undesired
harmful effects with major dysfunctional consequences including osteolysis. Hence, therapies targeting NF-kB
have been highly pursued to combat most inflammatory diseases. Unfortunately, most available therapies are
inefficient owing to lack of selectivity in such complex and ubiquitous signaling pathway wherein the essential
beneficial functions of NF-kB are blocked along side the harmful effects leading to detrimental outcomes.
Therefore, there is an unmet need to decode NF-kB signaling to identify specific targets that assign
signal specificity and distinguish between physiologic and pathologic functions. To address this critical
knowledge gap, we focused on RANKL-induced osteoclastogenesis as a proof of concept and set out to
decipher the NF-kB molecular machinery and identify the signal-specific molecular signature that controls this
response in osteoclast progenitors and maintains skeletal homeostasis. We hypothesize that the IKK scaffold
IKKγ/NEMO serves as a platform that site-specifically assembles unique signal activating or suppressing
protein complexes in cell and stimulus specific manners. This hypothesis is based on recent advances
implicating NEMO as a scaffold that integrates signaling molecules in response to a wide range of stimuli at
lysine (K) specific sites (refer to Fig 2). These modifications include, lysine poly-ubiquitination,
SUMOylation, and according to our novel finding, ISGylation; a process of attaching the ubiquitin-like protein,
ISG15 (IFN-stimulated gene) to target proteins. We conduced comprehensive NEMO lysine mutational
analysis and identified the NEMO K270 residue as a crucial RANKL-regulation target. Specifically, NEMO
harboring K270A mutation (NEMOK270A) elicits exacerbated osteoclastogenesis. More importantly, myeloid
knock-in mice of the NEMOK270A that we generated displayed severe osteopenia and osteolysis.
Mechanistically, autophagy is significantly decreased in NEMOK270A BMMs. Furthermore, proteomic screen
identified interferon-stimulated gene-15 (ISG15) as a potential regulator of osteoclastogenesis and autophagy.
Thus, our overarching hypothesis is: RANKL-induced binding of ISG15 to NEMO at K270 is essential to
restrain osteoclastogenesis by assembling a negative-feedback response. We further posit that mutating K270
hinders this regulatory process leading to reduced autophagy and uncontrolled osteoclastogenesis. Our aims
are: Aim 1: Determine the mechanism by which NEMO, through its K270 site, maintains physiologic
and restrains pathologic/exacerbated osteoclastogenesis.
Aim 2: Determine the role of RANKL-induced ISG15 as the ubiquitin-like protein that facilitates NEMO-
K270-mediated autophagy and control of physiologic osteoclastogenesis.
文摘:
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YOUSEF ABU-AMER其他文献
YOUSEF ABU-AMER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YOUSEF ABU-AMER', 18)}}的其他基金
Regulation of Osteoclastogenesis and Inflammatory Osteolysis
破骨细胞生成和炎性骨质溶解的调节
- 批准号:
10681786 - 财政年份:2023
- 资助金额:
$ 33.21万 - 项目类别:
Mechanisms of Physiologic and Pathologic Osteoclastogenesis
破骨细胞发生的生理和病理机制
- 批准号:
9889901 - 财政年份:2018
- 资助金额:
$ 33.21万 - 项目类别:
Molecular Mechanisms Underlying Tak1 Function in Osteoclasts
破骨细胞中 Tak1 功能的分子机制
- 批准号:
8635282 - 财政年份:2008
- 资助金额:
$ 33.21万 - 项目类别:
Molecular Mechanisms Underlying Tak1 Function in Osteoclasts
破骨细胞中 Tak1 功能的分子机制
- 批准号:
8830431 - 财政年份:2008
- 资助金额:
$ 33.21万 - 项目类别:
Mechanisms of IKK Regulation of Basal and Inflammatory Osteoclastogenesis
IKK 调节基础和炎症破骨细胞生成的机制
- 批准号:
7461161 - 财政年份:2008
- 资助金额:
$ 33.21万 - 项目类别:
Mechanisms of IKK Regulation of Basal and Inflammatory Osteoclastogenesis
IKK 调节基础和炎症破骨细胞生成的机制
- 批准号:
7793408 - 财政年份:2008
- 资助金额:
$ 33.21万 - 项目类别:
Molecular Mechanisms Underlying Tak1 Function in Osteoclasts
破骨细胞中 Tak1 功能的分子机制
- 批准号:
8501884 - 财政年份:2008
- 资助金额:
$ 33.21万 - 项目类别:
Molecular Mechanisms Underlying Tak1 Function in Osteoclasts
破骨细胞中 Tak1 功能的分子机制
- 批准号:
9017945 - 财政年份:2008
- 资助金额:
$ 33.21万 - 项目类别:
相似海外基金
Biosynthesis of bet-alanine in autolysosomes.
自溶酶体中 β-丙氨酸的生物合成。
- 批准号:
22K08681 - 财政年份:2022
- 资助金额:
$ 33.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding the metabolic consequences of the systemic alanine depletion in pancreatic ductal adenocarcinoma
了解胰腺导管腺癌中全身丙氨酸消耗的代谢后果
- 批准号:
474506 - 财政年份:2022
- 资助金额:
$ 33.21万 - 项目类别:
Studentship Programs
Characterizing alanine transporters as therapeutic targets for pancreatic cancer
将丙氨酸转运蛋白描述为胰腺癌的治疗靶点
- 批准号:
466496 - 财政年份:2021
- 资助金额:
$ 33.21万 - 项目类别:
Studentship Programs
Understanding the requirements of alanine supply and demand in pancreatic ductal adenocarcinoma
了解胰腺导管腺癌中丙氨酸的供需要求
- 批准号:
451838 - 财政年份:2021
- 资助金额:
$ 33.21万 - 项目类别:
Operating Grants
Sensing living P. aeruginosa using D-alanine derived radiotracers
使用 D-丙氨酸衍生的放射性示踪剂感测活的铜绿假单胞菌
- 批准号:
10230924 - 财政年份:2021
- 资助金额:
$ 33.21万 - 项目类别:
Sensing living P. aeruginosa using D-alanine derived radiotracers
使用 D-丙氨酸衍生的放射性示踪剂感测活的铜绿假单胞菌
- 批准号:
10399593 - 财政年份:2021
- 资助金额:
$ 33.21万 - 项目类别:
Sensing living P. aeruginosa using D-alanine derived radiotracers
使用 D-丙氨酸衍生的放射性示踪剂感测活的铜绿假单胞菌
- 批准号:
10570987 - 财政年份:2021
- 资助金额:
$ 33.21万 - 项目类别:
Spot measurement of alanine radicals produced by irradiation and application of sugar radial to dosimeter
辐照产生的丙氨酸自由基的点测及糖自由基在剂量计中的应用
- 批准号:
19K05343 - 财政年份:2019
- 资助金额:
$ 33.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Metabolic significance of lysosomal beta-alanine
溶酶体β-丙氨酸的代谢意义
- 批准号:
18K08528 - 财政年份:2018
- 资助金额:
$ 33.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of dosimetry technique for IMRT using alanine dosimeter
使用丙氨酸剂量计开发 IMRT 剂量测定技术
- 批准号:
18K15615 - 财政年份:2018
- 资助金额:
$ 33.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists