Emergency Myelopoiesis Pathways in the Control of Blood Production
控制血液产生的紧急骨髓生成途径
基本信息
- 批准号:10379332
- 负责人:
- 金额:$ 81.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgingBiological ProcessBloodBlood CellsBone MarrowCell LineageCellsCorrelative StudyDevelopmentDifferentiation TherapyDiseaseEmergency SituationGoalsHematologic NeoplasmsHematological DiseaseHematopoietic Cell ProductionHematopoietic stem cellsHeterogeneityHumanInflammationInflammatoryLinkLymphoidMPP2 geneMPP3 geneMalignant - descriptorMapsMolecularMultipotent Stem CellsMusMyelogenousMyelopoiesisMyeloproliferative diseaseNational Heart, Lung, and Blood InstituteNatural regenerationOutputPathway interactionsPatientsPhysiologicalPopulationProcessProductionRegulationRegulatory PathwayResearch Project GrantsSamplingSignal TransductionStressTherapeutic Interventionbiophysical propertiescytokinegranulocytehematopoietic stem cell differentiationinterestleukemiamacrophagenew therapeutic targetnovelprogenitorself-renewalstemstem cell functiontherapeutically effectivetranslational applications
项目摘要
PROJECT DESCRIPTION
Activation of myeloid differentiation pathways always accompanies blood regeneration after stress, the
development of hematological malignancies and physiological aging. However, our understanding of what activate myelopoiesis in such deregulated conditions is still very limited. Our goals in this NHLBI OIA application
are to (1) decipher the cellular and molecular mechanisms controlling emergency myelopoiesis pathways; (2)
understand how the hijacking of these mechanisms contributes to deregulated hematopoietic stem cell (HSC)
function and blood production in stress, disease and aging; and (3) identify novel targets for therapeutic interventions aimed at correcting blood production in these deregulated contexts. We recently showed that the output of the myeloid lineage at steady state reflects the differential production by HSCs of a small number of myeloid-biased multipotent progenitors (MPP), called MPP2 and MPP3, and a large number of lymphoid-biased
MPPs, known as MPP4 or LMPPs, which both give rise to granulocyte/macrophage progenitors (GMP) and
contribute to myelopoiesis (Pietras et al., 2015). During blood regeneration, we found that HSCs are transiently
induced to overproduce MPP2/3 and that MPP4 are reprogrammed towards almost exclusive myeloid output,
in large part due to cytokine stimulation and the triggering of specific regulatory pathways (Reynaud et al.,
2011; Pietras et al., 2015; 2016). An important consequence of the activation of this myeloid regeneration axis
is the formation of defined GMP clusters in the bone marrow (BM) cavity, which drive the local overproduction
of granulocytes (Hérault et al., submitted). This newly identified process of GMP cluster formation is finely
tuned by the timed release of important BM niche signals, and transient activation of an inducible self-renewal
network in a subset of GMPs. Altogether, the remodeling of the MPP compartment and induction of GMP cluster formation represent novel and targetable mechanisms of emergency myelopoiesis, which are transiently
activated during blood regeneration but are continuously triggered in myeloid malignancies. We are now interested in exploring the contribution of these mechanisms to other deregulated contexts such as inflammation
and aging, and in answering an exciting set of new questions that have directly emerged from these studies. In
particular, we would like to understand the molecular and cellular basis for the functional heterogeneity observed in the MPP and GMP compartments, map the mechanisms of HSC lineage commitment and their links
to the pro-inflammatory BM milieu, and decipher the contribution of the biophysical properties of the BM niche
to HSC and myeloid progenitor fate decisions. We also would like to conduct correlative studies with human
cells and leukemic patient samples to establish whether aberrant activation of similar emergency myelopoiesis
pathways contribute to deregulated blood production in humans. Taken together, these studies are paradigm
shifting for understanding the mechanisms controlling blood regeneration and their deregulations in leukemia
and aging, and for identifying new targets for translational applications and the treatment of a broad range of
blood disorders in humans. While many current therapies treat blood disorders by targeting the malignant
and/or overproduced blood cells, our objective is to identify new biological process upstream of these cells to
treat blood disorders by using anti-HSC differentiation therapies and by restoring proper regulation of blood
production.
项目描述
骨髓分化途径的激活总是伴随着应激后的血液再生,
血液恶性肿瘤的发展和生理衰老。然而,我们对在这种放松管制的条件下激活骨髓生成的了解仍然非常有限。我们在此 NHLBI OIA 申请中的目标
(1) 破译控制紧急骨髓生成途径的细胞和分子机制; (2)
了解这些机制的劫持如何导致造血干细胞 (HSC) 失调
压力、疾病和衰老中的功能和血液生成; (3) 确定治疗干预的新目标,旨在纠正这些放松管制的情况下的血液产生。我们最近表明,稳定状态下骨髓谱系的输出反映了HSC对少数骨髓偏向的多能祖细胞(MPP)(称为MPP2和MPP3)和大量淋巴偏向的祖细胞的差异产生。
MPP,称为 MPP4 或 LMPP,两者都能产生粒细胞/巨噬细胞祖细胞 (GMP) 和
有助于骨髓生成(Pietras et al., 2015)。在血液再生过程中,我们发现 HSC 会短暂地
诱导过度产生 MPP2/3,并且 MPP4 被重新编程为几乎唯一的骨髓输出,
很大程度上是由于细胞因子刺激和特定调节途径的触发(Reynaud 等人,
2011;皮特拉斯等人,2015; 2016)。骨髓再生轴激活的一个重要结果
是在骨髓 (BM) 腔中形成明确的 GMP 簇,从而导致局部过度生产
粒细胞(Hérault 等人提交)。这个新发现的 GMP 簇形成过程非常好
通过重要 BM 生态位信号的定时释放和诱导性自我更新的瞬时激活进行调整
GMP 子集中的网络。总而言之,MPP 区室的重塑和 GMP 簇形成的诱导代表了紧急骨髓生成的新颖且可靶向的机制,这些机制是短暂的
在血液再生过程中被激活,但在骨髓恶性肿瘤中持续被触发。我们现在有兴趣探索这些机制对其他放松管制环境(例如炎症)的贡献
和衰老,并回答这些研究直接出现的一系列令人兴奋的新问题。在
特别是,我们希望了解在 MPP 和 GMP 区室中观察到的功能异质性的分子和细胞基础,绘制 HSC 谱系承诺的机制及其联系
促进炎症的 BM 环境,并破译 BM 生态位的生物物理特性的贡献
HSC 和骨髓祖细胞的命运决定。我们也想与人类进行相关研究
细胞和白血病患者样本以确定是否有类似紧急骨髓生成的异常激活
途径有助于解除人类血液生产的管制。总的来说,这些研究都是范例
转变以了解控制血液再生的机制及其在白血病中的失调
和衰老,并确定转化应用和治疗广泛的新目标
人类血液疾病。虽然目前许多疗法通过针对恶性细胞来治疗血液疾病
和/或过量产生的血细胞,我们的目标是识别这些细胞上游的新生物过程,以
通过使用抗 HSC 分化疗法和恢复血液的正常调节来治疗血液疾病
生产。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emmanuelle Passegue其他文献
Emmanuelle Passegue的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emmanuelle Passegue', 18)}}的其他基金
Emergency Myelopoiesis in the Pathogenesis of Myeloid Malignancies
骨髓恶性肿瘤发病机制中的紧急骨髓生成
- 批准号:
10298484 - 财政年份:2021
- 资助金额:
$ 81.68万 - 项目类别:
Mechanisms of Hematopoietic Stem Cell and Blood aging
造血干细胞与血液衰老的机制
- 批准号:
10277927 - 财政年份:2021
- 资助金额:
$ 81.68万 - 项目类别:
Emergency Myelopoiesis in the Pathogenesis of Myeloid Malignancies
骨髓恶性肿瘤发病机制中的紧急骨髓生成
- 批准号:
10457443 - 财政年份:2021
- 资助金额:
$ 81.68万 - 项目类别:
Emergency Myelopoiesis in the Pathogenesis of Myeloid Malignancies
骨髓恶性肿瘤发病机制中的紧急骨髓生成
- 批准号:
10671730 - 财政年份:2021
- 资助金额:
$ 81.68万 - 项目类别:
Mechanisms of Hematopoietic Stem Cell and Blood aging
造血干细胞与血液衰老的机制
- 批准号:
10487436 - 财政年份:2021
- 资助金额:
$ 81.68万 - 项目类别:
Mechanisms of Hematopoietic Stem Cell and Blood aging
造血干细胞与血液衰老的机制
- 批准号:
10652627 - 财政年份:2021
- 资助金额:
$ 81.68万 - 项目类别:
Emergency Myelopoiesis Pathways in the Control of Blood Production
控制血液产生的紧急骨髓生成途径
- 批准号:
10610380 - 财政年份:2017
- 资助金额:
$ 81.68万 - 项目类别:
Emergency Myelopoiesis Pathways in the Control of Blood Production
控制血液产生的紧急骨髓生成途径
- 批准号:
9243425 - 财政年份:2017
- 资助金额:
$ 81.68万 - 项目类别:
Role of autophagy in normal and transformed hematopoietic stem cells
自噬在正常和转化造血干细胞中的作用
- 批准号:
8827732 - 财政年份:2014
- 资助金额:
$ 81.68万 - 项目类别:
Role of autophagy in normal and transformed hematopoietic stem cells
自噬在正常和转化造血干细胞中的作用
- 批准号:
8671387 - 财政年份:2014
- 资助金额:
$ 81.68万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 81.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 81.68万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 81.68万 - 项目类别:
Collaborative R&D
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 81.68万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 81.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 81.68万 - 项目类别:
Studentship
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 81.68万 - 项目类别:
Fellowship Award
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 81.68万 - 项目类别:
Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
- 批准号:
498278 - 财政年份:2024
- 资助金额:
$ 81.68万 - 项目类别:
Operating Grants
Welfare Enhancing Fiscal and Monetary Policies for Aging Societies
促进老龄化社会福利的财政和货币政策
- 批准号:
24K04938 - 财政年份:2024
- 资助金额:
$ 81.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




