Design and Development of SyMPET: System on chip Modular readout for high-resolution TOF-PET

SyMPET 的设计和开发:用于高分辨率 TOF-PET 的片上系统模块化读出

基本信息

  • 批准号:
    10385669
  • 负责人:
  • 金额:
    $ 26.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-30 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Nalu Scientific LLC (NSL) proposes to develop and optimize the design of a SiPM-based, low-power, high channel density, waveform-digitizing readout microchip for TOF-PET that will increase image quality and provide more accurate and precise quantization for PET brain imaging, with the potential to significantly improve early diagnosis of neurodegenerative disease while also allowing greater flexibility in the development of personalized patient imaging strategies. NSL’s patented waveform-digitizing “System on Chip” readout ASIC technology has the potential to substantially improve TOF-PET imaging from its current state. During Phase I, we will build on the prior experience and knowledge we have gained using NSL’s technology in developing state-of-the-art high energy and nuclear physics detectors to substantially improve PET imaging readout systems through increased SNR, image contrast and quality, reduced exposure times/dose, and reduced system cost to drive broad acceptance. These improvements will initially focus on brain PET imaging but can be expanded to whole-body systems. We will leverage NSL’s existing portfolio of low-power, low-cost WFD ASIC designs, already proven to work in large particle physics detectors, to implement a PET-specific WFD ASIC optimized for brain PET scanners but equally applicable to whole-body. We will initially develop detailed analytic modeling of light production and transport in scintillating crystals, along with realistic Monte Carlo simulations of sensor and readout electronics in order to derive baseline technical specifications for both a fully optimized TOF-PET WFD readout chip as well as a “bare-bones” implementation substantially based on circuit design elements derived from one or more existing NSL chip designs. NSL’s “System on Chip” WFD architecture, with fully random accessible analog storage, input triggering, and on-chip control capability, allows for a number of highly effective mechanisms to cope with design issues such as e.g., throughput, speed, and buffer length, will be crucial to optimize in the technical specification of a WFC ASIC which meets performance goals while simultaneously fulfilling the stringent constraints on physical and other characteristics such as size, weight, power, and cost that will be required in any realistic TOF-PET system. We will collaborate with Dr. Hamid Sabet (Harvard) to define a realistic full signal chain + readout model and subsequently evaluate its results to generate ASIC technical specifications and architectural design for a substantially improved WFD readout ASIC for TOF-PET systems relative to the current state of the art.
项目摘要 纳鲁科学有限责任公司(NSL)提出开发和优化基于SiPM的设计, 用于TOF-PET的低功率、高通道密度、波形数字化读出微芯片, 提高图像质量并为PET脑部提供更准确和精确量化 影像学,有可能显着提高神经退行性疾病的早期诊断 同时还允许在个性化患者成像的开发中具有更大的灵活性 战略布局NSL的专利波形数字化“片上系统”读出ASIC技术, 从当前状态大幅改善TOF-PET成像的潜力。在第一阶段, 我们将在使用NSL技术所获得的经验和知识的基础上, 开发最先进的高能和核物理探测器, PET成像读出系统通过提高SNR、图像对比度和质量, 曝光时间/剂量,并降低系统成本,以推动广泛的接受。这些 改进最初将集中在大脑PET成像,但可以扩展到全身 系统.我们将利用NSL现有的低功耗、低成本WFD ASIC设计产品组合, 已经被证明在大粒子物理探测器中工作,以实现PET特定的WFD ASIC针对脑部PET扫描仪进行了优化,但同样适用于全身。我们将初步 发展详细的分析模型的光的生产和运输在闪烁晶体,沿着 与传感器和读出电子现实的蒙特卡罗模拟,以获得 完全优化的TOF-PET WFD读出芯片以及 作为基本上基于电路设计元件的“裸骨”实现, 一个或多个现有的NSL芯片设计。NSL的“片上系统”WFD架构, 可随机访问的模拟存储、输入触发和片上控制能力, 许多非常有效的机制来科普设计问题,例如,吞吐量, 在WFC ASIC的技术规范中,速度和缓冲区长度对于优化至关重要 其满足性能目标,同时满足 所需的物理和其他特征,例如尺寸、重量、功率和成本 任何实际的TOF-PET系统。我们将与Hamid Sabet博士(哈佛)合作, 真实的全信号链+读出模型,并随后评估其结果, 用于大幅改进WFD读出的ASIC技术规范和架构设计 用于TOF-PET系统的ASIC相对于当前技术水平。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Flood其他文献

Kevin Flood的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Conference: 2023 Neuroethology: Behavior, Evolution and Neurobiology GRC Linking Diversity in Cells, Circuits, and Brain Architecture to Ecologically Relevant Behaviors
会议:2023 年神经行为学:行为、进化和神经生物学 GRC 将细胞、回路和大脑结构的多样性与生态相关行为联系起来
  • 批准号:
    2334509
  • 财政年份:
    2023
  • 资助金额:
    $ 26.3万
  • 项目类别:
    Standard Grant
Genetic architecture of brain evolution during ecological divergence
生态分化期间大脑进化的遗传结构
  • 批准号:
    NE/W010011/1
  • 财政年份:
    2023
  • 资助金额:
    $ 26.3万
  • 项目类别:
    Research Grant
Understanding the impact of capillary obstructions on brain angio-architecture and function
了解毛细血管阻塞对脑血管结构和功能的影响
  • 批准号:
    RGPIN-2019-06399
  • 财政年份:
    2022
  • 资助金额:
    $ 26.3万
  • 项目类别:
    Discovery Grants Program - Individual
CCF: Small: Paradox and Brain-inspired Computer Architecture
CCF:小型:悖论和受大脑启发的计算机架构
  • 批准号:
    2204780
  • 财政年份:
    2022
  • 资助金额:
    $ 26.3万
  • 项目类别:
    Standard Grant
Analysis of The Role of Network Architecture and Stimuli Properties in The Brain Functional Control
网络架构和刺激特性在大脑功能控制中的作用分析
  • 批准号:
    572676-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 26.3万
  • 项目类别:
    University Undergraduate Student Research Awards
Understanding the molecular and functional architecture of diverse body-brain pathways
了解不同体脑通路的分子和功能结构
  • 批准号:
    10503462
  • 财政年份:
    2022
  • 资助金额:
    $ 26.3万
  • 项目类别:
Understanding the impact of capillary obstructions on brain angio-architecture and function
了解毛细血管阻塞对脑血管结构和功能的影响
  • 批准号:
    RGPIN-2019-06399
  • 财政年份:
    2021
  • 资助金额:
    $ 26.3万
  • 项目类别:
    Discovery Grants Program - Individual
Impact of Reproductive Aging on the Functional and Structural Architecture of the Human Brain
生殖衰老对人脑功能和结构的影响
  • 批准号:
    10313384
  • 财政年份:
    2021
  • 资助金额:
    $ 26.3万
  • 项目类别:
How the 3D architecture of the brain shapes cancer cell fate decisions
大脑的 3D 结构如何影响癌细胞的命运决定
  • 批准号:
    10245406
  • 财政年份:
    2021
  • 资助金额:
    $ 26.3万
  • 项目类别:
The genetic architecture and functional role of the mitochondrial transcriptome in the Human Brain
人脑线粒体转录组的遗传结构和功能作用
  • 批准号:
    2546794
  • 财政年份:
    2021
  • 资助金额:
    $ 26.3万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了