Genetic architecture of brain evolution during ecological divergence

生态分化期间大脑进化的遗传结构

基本信息

  • 批准号:
    NE/W010011/1
  • 负责人:
  • 金额:
    $ 82.48万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

How do nervous systems produce such a diversity of animal behaviours? Distinct environments contain different information, and present problems that require tailored solutions. The resulting behavioural adaptations are mediated by the evolution of brain function, but like any trait or characteristic, brains and sensory organs are the product of two processes: evolution and development. How these processes interact to determine how brains vary in form and function has been debated for decades, with no clear resolution. Analyses of how the volumes of different brain regions vary both in relation to each other, and with overall brain size, have been central to this debate. In vertebrates, brain structure is characterised by both relative consistency in scaling between components, but also by many examples where one brain region expands or contracts independently of the rest of the brain, often viewed as a hallmark of behavioural specialisation or innovation. Alternative hypotheses about how brains evolve explain these two patterns by emphasising either i) external processes, such as correlated selection pressures, which can explain why brain regions vary in size together, and more targeted selection pressures that could produce region specific change (so-called mosaic evolution); or ii) internal processes, like developmental links among brain regions that could explain the general conservation of brain structure (so-called concerted evolution) by tracing variation in the size of brain regions to common sources. Although these hypotheses are not mutually exclusive, there is little agreement over their relative importance, or how that importance may vary across environmental or ecological contexts.Recently, to resolve this debate, increased attention has fallen on the predictions these hypotheses make about the number and effects of genes underpinning brain evolution. Mosaic and concerted hypotheses make directly opposing predictions. Mosaic brain evolution requires a greater degree of independence between the genes shaping variation in different brain structures, while concerted brain evolution predicts that the majority of variation in the volumes of brain regions will be explained by genes controlling the development of overall brain size. To date, only a handful of studies have tested these predictions, but the importance of this work has been emphasised by theoretical modelling of brain evolution that reveals how patterns of volumetric variation among extant species are potentially uninformative for inferring what developmental mechanisms shape brain structure. Here, we aim to reveal the nature of genetic variation facilitating brain evolution between ecologically divergent cichlid fishes to test the extent, nature and conservation of genetic associations among brain components. Our system is unique, in that it encapsulates three pairs of lineages that are increasingly divergent from one another, allowing us to compare how the genes involved in brain evolution vary over time. This, together with available genomic data, will enable us to investigate the evolutionary and phylogenetic history of genes governing brain evolution. At the same time, we will identify key developmental periods where trajectories of brain structure divide, providing a foundation to confirm the causative effects of genes implicated in brain evolution, and to examine how changes in the development of one structure impact another. At the end of this grant we will have uncovered rich information about how freely brain regions are to evolve independently, how flexible brain development is to facilitate this kind of adaptation, and the kinds of genetic change that alter brain development. This information is vital for interpreting why brain structure is generally conserved across species, what it means when it is not, and the role adaptive restructuring of the brain plays in enabling species to take advantage of new ecological opportunities.
神经系统是如何产生如此多样的动物行为的?不同的环境包含不同的信息,并且存在需要定制解决方案的问题。由此产生的行为适应是由大脑功能的进化介导的,但就像任何特征或特征一样,大脑和感觉器官是两个过程的产物:进化和发育。这些过程是如何相互作用来决定大脑在形式和功能上的变化的,这个问题已经争论了几十年,没有明确的解决方案。分析大脑不同区域的体积是如何相互变化的,以及整个大脑的大小是如何变化的,这是这场辩论的核心。在脊椎动物中,大脑结构的特点是各组成部分之间的比例相对一致,但也有许多例子表明,一个大脑区域独立于大脑的其他部分扩张或收缩,这通常被视为行为专业化或创新的标志。关于大脑如何进化的其他假说通过强调外部过程来解释这两种模式,例如相关的选择压力,这可以解释为什么大脑区域的大小一起变化,以及更有针对性的选择压力,可以产生特定区域的变化(所谓的马赛克进化);或者ii)内部过程,比如大脑区域之间的发育联系,通过追踪大脑区域大小的变化到共同的来源,可以解释大脑结构的一般保存(所谓的协同进化)。尽管这些假设不是相互排斥的,但对于它们的相对重要性,或者这种重要性在不同的环境或生态背景下如何变化,人们几乎没有达成一致。最近,为了解决这一争论,人们越来越多地关注这些假设对支持大脑进化的基因的数量和影响所做的预测。镶嵌和协调的假设做出了直接相反的预测。马赛克脑进化要求在不同脑结构中形成变异的基因之间具有更大程度的独立性,而协同脑进化预测,大脑区域体积的大部分变异将由控制大脑整体大小发育的基因来解释。迄今为止,只有少数研究测试了这些预测,但这项工作的重要性已经被大脑进化的理论模型所强调,该模型揭示了现存物种之间体积变化的模式如何可能无法推断发育机制塑造大脑结构。在此,我们旨在揭示促进生态差异慈鲷脑进化的遗传变异的本质,以测试脑成分之间遗传关联的程度、性质和保护。我们的系统是独一无二的,因为它包含了三对彼此越来越不同的谱系,使我们能够比较参与大脑进化的基因是如何随时间变化的。这与可用的基因组数据一起,将使我们能够研究控制大脑进化的基因的进化和系统发生历史。同时,我们将确定大脑结构轨迹分裂的关键发育时期,为确认涉及大脑进化的基因的因果作用提供基础,并研究一种结构的发展变化如何影响另一种结构。在这项资助结束时,我们将发现丰富的信息,关于大脑区域如何自由地独立进化,大脑发育如何灵活地促进这种适应,以及改变大脑发育的基因变化。这些信息对于解释为什么大脑结构在不同物种之间通常是保守的,当它不保守时意味着什么,以及大脑的适应性重组在使物种能够利用新的生态机会方面所起的作用至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Montgomery其他文献

202 ONTOGENY OF CANINE CARDIAC BETA-ADRENERGIC RECEPTORS
犬心脏β-肾上腺素能受体的个体发育
  • DOI:
    10.1203/00006450-197804001-00207
  • 发表时间:
    1978-04-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Stephen Montgomery;Seymour Hepner;Pedro Jose
  • 通讯作者:
    Pedro Jose
Licensed Subcutaneous Infusion Therapies in Advanced Parkinson’s Disease: An Indirect Treatment Comparison and Cost-Minimisation Analysis
  • DOI:
    10.1007/s40120-025-00789-9
  • 发表时间:
    2025-07-08
  • 期刊:
  • 影响因子:
    4.800
  • 作者:
    Marc Vérin;Ángel Sesar;Bharat Amlani;Niall Smith;Konstantinos Kipentzoglou;Stephen Montgomery;Alice Reading;Andrei Karlsson;Anna Willis;Andrew J. Lees
  • 通讯作者:
    Andrew J. Lees
A COMMUNITY OVERLAP STRATEGY REVEALS CENTRAL GENES AND NETWORKS IN HEART FAILURE AUTHORS
社区重叠策略揭示了心力衰竭作者的中心基因和网络
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Cordero;A. Erbilgin;Ching Shang;M. Morley;M. Wheeler;F. Dewey;Kevin Scott Smith;Ray Hu;Jeffrey Brandimarto;Yichuan Liu;Mingyao Li;Hongzhe Li;Scott Ritter;S. Zhao;K. Rathi;L. Qu;Avinash Das;Stephen Montgomery;S. Hannenhalli;C. Moravec;Wilson Tang;K. Margulies;T. Cappola;Euan A. Ashley
  • 通讯作者:
    Euan A. Ashley
Multi-Omic Profiling of Macrophages Lacking emTet2/em or emDnmt3a/em Reveals Mechanisms of Hyper-Inflammation in Clonal Hematopoiesis
缺乏 emTet2/em 或 emDnmt3a/em 的巨噬细胞的多组学分析揭示了克隆性造血中过度炎症的机制
  • DOI:
    10.1182/blood-2023-187890
  • 发表时间:
    2023-11-02
  • 期刊:
  • 影响因子:
    23.100
  • 作者:
    Kameron B Rodrigues;Jayakrishnan Gopakumar;Ziming Weng;Shaneice Renee Mitchell;Margaret Maurer;Daniel Nachun;Tiffany Eulalio;Dorothy Estrada;Thomas Mazumder;Lisa Ma;Stephen Montgomery;Siddhartha Jaiswal
  • 通讯作者:
    Siddhartha Jaiswal
1025 – SINGLE-CELL MULTI-OMICS MAP OF HUMAN FOETAL BLOOD IN DOWN'S SYNDROME
  • DOI:
    10.1016/j.exphem.2024.104326
  • 发表时间:
    2024-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ana Cvejic;Andrew Marderstein;Stephen Montgomery
  • 通讯作者:
    Stephen Montgomery

Stephen Montgomery的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Montgomery', 18)}}的其他基金

Neurological adaptation and ecological specialisation
神经适应和生态专业化
  • 批准号:
    NE/N014936/2
  • 财政年份:
    2019
  • 资助金额:
    $ 82.48万
  • 项目类别:
    Fellowship
Neurological adaptation and ecological specialisation
神经适应和生态专业化
  • 批准号:
    NE/N014936/1
  • 财政年份:
    2016
  • 资助金额:
    $ 82.48万
  • 项目类别:
    Fellowship

相似国自然基金

The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Genetic Studies of Alzheimer's Disease in Jewish and Arab Populations
犹太人和阿拉伯人群阿尔茨海默病的遗传学研究
  • 批准号:
    10639024
  • 财政年份:
    2023
  • 资助金额:
    $ 82.48万
  • 项目类别:
Genetic Architecture of Aging-Related TDP-43 and Mixed Pathology Dementia
衰老相关 TDP-43 和混合病理痴呆的遗传结构
  • 批准号:
    10658215
  • 财政年份:
    2023
  • 资助金额:
    $ 82.48万
  • 项目类别:
Understanding Rare Genetic Variation and Disease Risk: A Global Neurogenetics Initiative
了解罕见的遗传变异和疾病风险:全球神经遗传学倡议
  • 批准号:
    10660098
  • 财政年份:
    2023
  • 资助金额:
    $ 82.48万
  • 项目类别:
Genetic Architecture of Early-Onset Psychosis in Mexicans (EPIMex)
墨西哥人早发性精神病的遗传结构 (EPIMex)
  • 批准号:
    10716496
  • 财政年份:
    2023
  • 资助金额:
    $ 82.48万
  • 项目类别:
Genetic and neuroanatomical basis of neuropsychiatric symptoms in Alzheimer's disease in populations of diverse ancestry
不同血统人群中阿尔茨海默病神经精神症状的遗传和神经解剖学基础
  • 批准号:
    10567606
  • 财政年份:
    2023
  • 资助金额:
    $ 82.48万
  • 项目类别:
Human Isogenic Organoid Models of Genetic Forms of Autism to Identify Convergent and Divergent Pathomechanisms in Autism
自闭症遗传形式的人类同基因类器官模型,用于识别自闭症趋同和发散的病理机制
  • 批准号:
    10736309
  • 财政年份:
    2023
  • 资助金额:
    $ 82.48万
  • 项目类别:
Global studies into the Genetic Architecture of the Brain's White Matter Network through Harmonized and Coordinated Analyses in the ENIGMA-Consortium
通过 ENIGMA 联盟的统一和协调分析对大脑白质网络的遗传结构进行全球研究
  • 批准号:
    10720443
  • 财政年份:
    2023
  • 资助金额:
    $ 82.48万
  • 项目类别:
AIM-AI: an Actionable, Integrated and Multiscale genetic map of Alzheimer's disease via deep learning
AIM-AI:通过深度学习绘制阿尔茨海默病的可操作、集成和多尺度遗传图谱
  • 批准号:
    10668829
  • 财政年份:
    2023
  • 资助金额:
    $ 82.48万
  • 项目类别:
Genetic Architecture of Pure Alzheimer's Disease and Mixed Pathology
纯阿尔茨海默病和混合病理学的遗传结构
  • 批准号:
    10712591
  • 财政年份:
    2023
  • 资助金额:
    $ 82.48万
  • 项目类别:
Genetic Mapping of Modifier Loci in a Mouse Model KCNB1 Encephalopathy
KCNB1 脑病小鼠模型修饰位点的遗传图谱
  • 批准号:
    10753301
  • 财政年份:
    2023
  • 资助金额:
    $ 82.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了