Real-time AI-enhanced Low Dose Fluoroscopy
实时人工智能增强低剂量透视
基本信息
- 批准号:10385142
- 负责人:
- 金额:$ 13.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-25 至 2023-09-24
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAnatomyArchitectureArtificial IntelligenceBreast Cancer Risk FactorCadaverChildClinicClinicalClinical ResearchComputer softwareData SetDevelopmentDoseExposure toFeedbackFluoroscopyGoalsHospitalsImageImage EnhancementImaging DeviceIndustrializationIonizing radiationLearningLimb structureMagnetic Resonance ImagingMalignant Childhood NeoplasmMalignant NeoplasmsMedicalMedical ImagingMethodsModelingMotivationOperating RoomsOperative Surgical ProceduresOrthopedicsPatientsPerformancePhasePositron-Emission TomographyProceduresRadiation Dose UnitRadiation exposureRecurrenceResearchRiskRoentgen RaysSmall Business Innovation Research GrantSpeedSpinalSpine surgerySurgeonSystemThyroid GlandTimeTrainingTranslatingVertebral columnVisualizationWomanWorkbasecancer riskdeep learningdenoisingexperienceimage guided interventionimage processingimage reconstructionimaging modalityimprovedinnovationmillisecondminimally invasivemodel designnoveloperationpreservationprocessing speedreal time modelsoftware developmentsuccesstool
项目摘要
Project Summary
Motivation: Fluoroscopy is an indispensable tool for image-guided interventions in 50 million
surgeries performed annually in the US. It leverages ionizing radiation from x-rays to provide
surgeons with real-time, high-quality imaging feedback. Radiation exposure is harmful for both
the patients and surgeons. Repetitive patient exposure has been shown to double the risk of
breast cancer in women; meanwhile, surgeon exposure is also concerning. Orthopedic
surgeons are 5x more likely to develop cancer in their lifetime; spine surgeons receive up to 12x
more radiation exposure compared to other orthopedic surgeons. With minimally invasive
surgery becoming widely adopted in recent years, the use of fluoroscopy has greatly increased.
Surgeons rely on the navigation provided by fluoroscopy during these procedures, as they do
not have direct visualization of the anatomy. Therefore, reducing the radiation exposure from
fluoroscopy while maintaining high imaging quality is a high priority. In the past few years,
artificial intelligence (AI) methods have shown promising advances to improve the quality of
medical imaging. Subtle Medical Inc. has already received FDA clearance for its AI-based
software products to reduce the dose for PET by four times and improve image quality for MRI.
The motivation of this proposal is to translate our initial success to another imaging modality and
achieve low dose fluoroscopy.
Approach: This phase I SBIR project has three aims. Aim 1 is to develop AI software using
recurrent deep learning architecture to achieve 6x dose reduction for fluoroscopy. Aim 2 is to
design model pruning, kernel optimization, and high-performance inference frameworks to
achieve real-time processing. Finally, in Aim 3, we will evaluate both qualitatively and
quantitatively the developed software on phantoms and cadavers.
Significance: This work will enable six times lower dose fluoroscopy. The completion of the
project will have wide impact to greatly reduce radiation exposure in the operating room, hence
reducing the risk of cancer development for both patients and clinicians.
项目摘要
动机:荧光透视是5000万患者中图像引导干预不可或缺的工具
每年在美国进行的手术。它利用x射线的电离辐射,
为外科医生提供实时、高质量的成像反馈。辐射对两者都有害
病人和外科医生。重复的患者暴露已被证明会增加一倍的风险,
女性乳腺癌;同时,外科医生的暴露也令人担忧。骨科
外科医生一生中患癌症的可能性是普通外科医生的5倍;脊柱外科医生一生中患癌症的可能性是普通外科医生的12倍
与其他整形外科医生相比,辐射暴露更多。微创
近年来,外科手术被广泛采用,荧光透视的使用大大增加。
外科医生在这些手术中依赖于荧光透视提供的导航,
不能直接看到解剖结构。因此,减少辐射暴露,
荧光透视同时保持高成像质量是高度优先的。在过去的几年里,
人工智能(AI)方法已经显示出有希望的进步,以提高质量,
医学成像Subtle Medical Inc.已经获得了FDA的批准,
软件产品将PET剂量降低四倍,并提高MRI图像质量。
该提案的动机是将我们最初的成功转化为另一种成像方式,
实现低剂量透视。
方法:SBIR项目第一阶段有三个目标。目标1是使用
循环的深度学习架构,以实现荧光透视的6倍剂量减少。目标二是
设计模型修剪、内核优化和高性能推理框架,
实现实时处理。最后,在目标3中,我们将定性评估和
对所开发的软件在体模和尸体上进行了定量分析。
意义:这项工作将使荧光透视剂量降低六倍。的完成
该项目将产生广泛的影响,大大减少手术室的辐射暴露,因此
降低患者和临床医生患癌症的风险。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Enhao Gong其他文献
Enhao Gong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Enhao Gong', 18)}}的其他基金
Low- and Zero-dose Contrast-enhanced MRI Using Deep Learning
使用深度学习的低剂量和零剂量对比增强 MRI
- 批准号:
10225646 - 财政年份:2020
- 资助金额:
$ 13.22万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 13.22万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 13.22万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 13.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 13.22万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 13.22万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 13.22万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 13.22万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 13.22万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 13.22万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 13.22万 - 项目类别:
Studentship














{{item.name}}会员




