Low- and Zero-dose Contrast-enhanced MRI Using Deep Learning

使用深度学习的低剂量和零剂量对比增强 MRI

基本信息

  • 批准号:
    10225646
  • 负责人:
  • 金额:
    $ 75.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary Motivation: Gadolinium-based contrast agents (GBCAs) are used in approximately a third of all MRI scans. The unique relaxation parameters of GBCAs create indispensable image contrast for a wide range of clinical applications, such as angiography and tumor detection. However, the usage of GBCAs has been linked to the development of nephrogenic systemic fibrosis (NSF). NSF can be painful, cause severe disability, and even death. The risk of developing NSF prevents millions of patients with advanced chronic kidney disease (CKD) from receiving contrast-enhanced MRI exams. The recent identification of gadolinium deposition within the brain and body has raised additional safety concerns about the usage of GBCAs. Studies have demonstrated increased signal intensity on the unenhanced T1-weighted MR images that is correlated with previous GBCA exposure, and this gadolinium retention is independent of renal function. While initial reports focused on linear GBCAs, more recent reports show that gadolinium deposition occurs with macrocyclic GBCAs as well, albeit at lower levels. FDA has recently issued warnings about gadolinium retention following contrast-enhanced MRI, and required GBCA manufacturers to conduct human and animal studies to further assess the safety of these contrast agents. This project addresses these concerns by developing low-dose and zero-dose contrast-enhanced MRI using artificial intelligence (AI) and deep learning (DL). Approach: This fast-track project has two phases and three aims. Aim 1 (Phase I) is to develop a DL method that can synthesize full-dose contrast-enhanced MR images using pre-contrast images and contrast-enhanced images acquired with only 10% of standard GBCA dose. A software infrastructure will be constructed to seamlessly integrate the DL software between MR scanners and PACS. Aim 2 (Phase II) is to develop a DL method that can synthesize full-dose contrast-enhanced MR images using GBCA-free acquisitions with different image contrast. In Aim 3 (Phase II), we will clinically validate and evaluate both low-dose and zero-dose DL methods, including on patients with mild- to-moderate CKD. Non-inferiority tests and diagnostic performance of the synthesized full-dose images compared to the true full-dose images will be performed. Significance: This work will lead to safer contrast-enhanced MRI. The low-dose and zero-dose contrast-enhanced MRI method will benefit not only millions of patients with advanced CKD, who cannot currently undergo contrast-enhanced MRI, but many more patients with normal kidney function, who are at the risk of gadolinium retention after contrast-enhanced MRI.
项目概要 动机:基于钆的造影剂(GBCA)大约用于 占所有 MRI 扫描的第三位。 GBCA 独特的松弛参数创造了不可或缺的 图像对比度适用于广泛的临床应用,例如血管造影和肿瘤 检测。然而,GBCA 的使用与 肾源性系统性纤维化(NSF)。 NSF 可能会带来痛苦,导致严重残疾,并且 甚至死亡。发生 NSF 的风险阻止了数百万晚期患者的健康 接受对比增强 MRI 检查导致的慢性肾脏病 (CKD)。最近的 大脑和身体内钆沉积的鉴定引起了额外的关注 关于使用 GBCA 的安全问题。研究表明信号增强 与之前相关的未增强 T1 加权 MR 图像上的强度 GBCA 暴露和钆滞留与肾功能无关。尽管 最初的报告重点关注线性 GBCA,最近的报告显示钆 大环 GBCA 也会发生沉积,尽管水平较低。 FDA 有 最近发布了关于对比增强 MRI 后钆滞留的警告, 并要求GBCA制造商进行人体和动物研究以进一步 评估这些造影剂的安全性。该项目通过以下方式解决了这些问题 使用人工智能开发低剂量和零剂量对比增强 MRI (人工智能)和深度学习(DL)。 方法:这个快速通道项目分为两个阶段和三个目标。目标 1(第一阶段)是 开发一种 DL 方法,可以使用以下方法合成全剂量对比增强 MR 图像 仅用标准值 10% 即可获取的预对比图像和对比增强图像 GBCA 剂量。将构建软件基础设施以无缝集成深度学习 MR 扫描仪和 PACS 之间的软件。目标 2(第二阶段)是开发 DL 方法 可以使用 GBCA-free 合成全剂量对比增强 MR 图像 具有不同图像对比度的采集。在目标 3(第二阶段)中,我们将进行临床验证 并评估低剂量和零剂量 DL 方法,包括对患有轻度 至中度 CKD。合成物的非劣效性检验和诊断性能 将执行与真实全剂量图像相比的全剂量图像。 意义:这项工作将带来更安全的对比增强 MRI。低剂量和 零剂量对比增强MRI方法不仅使数以百万计的癌症患者受益 晚期 CKD,目前无法接受对比增强 MRI,但还有更多 肾功能正常且术后有钆滞留风险的患者 对比增强 MRI。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Enhao Gong其他文献

Enhao Gong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Enhao Gong', 18)}}的其他基金

Real-time AI-enhanced Low Dose Fluoroscopy
实时人工智能增强低剂量透视
  • 批准号:
    10385142
  • 财政年份:
    2021
  • 资助金额:
    $ 75.57万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 75.57万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 75.57万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 75.57万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 75.57万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 75.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 75.57万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 75.57万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 75.57万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 75.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 75.57万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了