Federated Automated Survey Tool (FAST)

联合自动调查工具 (FAST)

基本信息

  • 批准号:
    10382821
  • 负责人:
  • 金额:
    $ 30.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-15 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Summary/Abstract Public health officials within both acute and chronic disease realms have relied predominantly on survey data to gather information on disease prevalence, behavioral models, risk populations, risk probability, and disease progression. Conventional surveys are subject to a number of known limitations, such as respondents' reluctance to participate, social desirability biases, lag time between questionnaire design, data collection, and availability of results, and intermittent coverage of important topics due to associated implementation costs. Further, disease control experts and policy makers lack access to real-time data and efficient tools to provide contextual awareness vis-à-vis surveys that are implemented for disease surveillance and program management. The implications of not having a timely and broader understanding of the environment and community affects the representativeness and demographic specificity of assessments and of the data used to drive policies and interventions. The proposed Federated Automated Survey Tool (FAST) will be developed as a collaboration among Barron Associates, Inc., George Mason University, and University of Virginia researchers. FAST will be an analytics platform that can be used by public health officials, clinical care investigators, institutional administrators, and others to more easily survey targeted cohorts regarding acute and chronic diseases (e.g., influenza, coronavirus, high blood pressure, etc.) and other indicators (e.g., depression prevalence, tobacco use, substance abuse, etc.) by harnessing social media (e.g., Twitter) or other web/electronic data. Based on both automated and tailorable investigator inputs, the proposed FAST platform will facilitate the construction of appropriate interrogations of social media and web data to yield prospective and longitudinal insights to answer user-initiated questions. The FAST analytics platform will enable local, national, and worldwide surveys on geographically- and demographically-targeted social media and web users based on their Tweets, posts, emails, search, and other web data and metadata. The FAST platform will utilize sophisticated text analytics and novel survey construction and analysis techniques. The survey results will then be analyzed automatically to gain insights and answer a diverse set of questions regarding targeted geographic- and demographic-specific prevalence and severity estimates. These can be one-off surveys, pre- and post-intervention surveys, or online, real-time, longitudinal surveys. As an example of the latter, school administrators could track national or more localized (i.e., geo-tagged) student social media posts in real time regarding issues such as drinking, drug use, stress, depression, or suicide, enabling administrators to better tailor services offered to students and/or detect the need for interventions. The FAST platform will employ a consolidated approach that makes it relatively easy for non-experts to create, administer, and survey social network and electronic data of nearly any cohort. With FAST, the full range of probability sampling techniques (e.g., simple random samples, stratified random samples, etc.) will be available to end-users, along with the corresponding estimated variance and bound on the error of the estimate.
摘要/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alec J Bateman其他文献

Alec J Bateman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alec J Bateman', 18)}}的其他基金

Robust Blink-based Communication System for Patients in Bed
适用于床上患者的基于眨眼的强大通信系统
  • 批准号:
    8395624
  • 财政年份:
    2012
  • 资助金额:
    $ 30.15万
  • 项目类别:
A Blink-based Communication (BLINC) System for Patients in Bed
针对卧床患者的眨眼通讯 (BLINC) 系统
  • 批准号:
    8830598
  • 财政年份:
    2012
  • 资助金额:
    $ 30.15万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 30.15万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.15万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 30.15万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.15万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 30.15万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.15万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 30.15万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 30.15万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 30.15万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.15万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了