Efficient and privacy-enhancing consent management for health informatics data sharing
针对健康信息学数据共享的高效且增强隐私的同意管理
基本信息
- 批准号:10385293
- 负责人:
- 金额:$ 25.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountabilityAcuteAddressAgeAsthmaAwarenessBig DataCaringChronic DiseaseCloud ComputingCohort StudiesCollectionComplexComputer softwareConsentDataData AnalyticsData LinkagesData Management ResourcesData StoreDatabasesDevelopmentDiabetes MellitusDiagnosisDiseaseEmergency CareEmergency department visitEnsureEnvironmentHealthHealth Care CostsHealth Care ResearchHealth PersonnelHealthcareHospitalsIndividualInformed ConsentInstitutionLinkLocationMachine LearningMedicalMedical ResearchModelingModernizationMyocardial InfarctionNatureOnline SystemsOntologyOutcomePatient-Focused OutcomesPatientsPopulationPrevention strategyPrivacyPrivatizationProcessPublic Health InformaticsRaceRecordsReportingResearchResourcesRunningSecureSecuritySelection BiasSeveritiesSiteSpecific qualifier valueTechniquesTheftTimeTrustVisitasthma exacerbationasthmatic patientbaseblockchaincare outcomescloud basedcohortcostdata exchangedata integrationdata sharingdistributed datadiverse dataencryptionflexibilityhealth care modelhealth care service organizationhealth datahealth disparityhealth managementhealth organizationimprovedindexingnew technologyoperationpatient orientedpatient privacypaymentpredictive modelingpreventprivacy preservationtool
项目摘要
Project Abstract:
To reduce costs and enhance health outcomes, it is of critical importance that patient data are systematically
gathered, cleaned and analyzed, thereby allowing us to build more accurate, timely and reliable models for
diagnosing, managing and treating diseases. One example application domain is asthma control and prediction.
In USA alone, about 40 million people suffered from lifetime asthma (13% of the USA population) and 26 million
people (8%) suffered from current asthma. Developing better predictive models for asthma attacks, can result
in enhancing preventive strategies, improving patient outcomes, and significantly reducing healthcare costs due
to reduced emergency care need. One of the key factors obstructing such models for health care management
is the integration of patient data that are scattered across multiple organizations. This fundamental challenge is
particularly acute for chronic diseases such as asthma where patients often receive care at multiple institutions
within a region. Furthermore, single site studies may provide inaccurate picture due to data inaccuracies. For
example, due to certain selection biases, number of patients from certain race group maybe underrepresented
in one location. In addition, severity information of diseases may not be complete if all the emergency care visits
are not recorded. Without proper record linkage and data duplication, many of the disease specific conditions
may be over-represented. For instance, it is reported that after cross-institution deduplication, number of records
related to diabetes reduced 24.0%, asthma reduced 28.0%, and myocardial infarction reduced 10.9%.
Therefore, it is of paramount importance to merge records in a manner that mitigates duplication, as well as
fragmentation, of an individual’s information. Although there have been efforts to implement health information
exchanges to facilitate data integration and exchange, linking patient records across multiple health care
organizations create significant security and privacy challenges. At the same time, as the usage of healthcare
analytics and the data sharing increases, patient trust in the overall data analytics pipeline must be ensured by
asking patients to make a “consent decision”. This consent decision concerns the sharing and accessing of the
patient’s health data for treatment, payment, and health care operations purposes. As a result, our healthcare
analytics research nowadays is at utmost need of a product that can manage patient consent while allowing
secure and privacy-preserving linkage of health care data across multiple institutions.
To address these challenges, we will develop a privacy-preserving solution that can 1) efficiently capture
consent, use the captured consent information to gather patient data distributed across resources within a certain
health organization efficiently and 2) link the data hosted by different users across disparate health organizations
while protecting patient privacy and providing accountability. Although there exist some solutions for managing
healthcare consent and privacy-preserving record linkage, they are not integrated. In addition, existing
techniques either do not easily scale for large amounts of data and/or leak sensitive information during record
linkage process. Finally, we are not aware of any existing tool that combines private-record linkage with private
blockchains for providing accountability.
项目摘要:
为了降低成本并提高健康状况,重要的是患者数据是至关重要的
收集,清洁和分析,从而使我们能够建立更准确,及时和可靠的模型
诊断,管理和治疗疾病。一个示例应用程序域是哮喘控制和预测。
仅在美国,约有4000万人患有终身哮喘(占美国人口的13%)和2600万
人们(8%)患有目前的哮喘。为哮喘攻击开发更好的预测模型,可能会导致
在增强预防策略,改善患者预后并大大降低应有的医疗费用
减少紧急护理需求。阻碍此类模型的医疗保健管理的关键因素之一
是散布在多个组织中的患者数据的集成。这个基本挑战是
特别是患者经常在多个机构接受护理的哮喘等慢性疾病特别急性
在一个区域内。此外,由于数据不准确,单个站点研究可能会提供不准确的情况。为了
例如,由于某些选择偏见,某些种族组的患者人数可能不足
在一个位置。此外,如果所有急诊就诊,疾病的严重性信息可能还不完整
未记录。没有适当的记录连锁和数据重复,许多特定疾病的疾病
可能会过多代表。例如,据报道,跨机构重复数据删除后,记录数量
与糖尿病有关,降低了24.0%,哮喘降低了28.0%,心肌梗塞降低了10.9%。
因此,以减轻重复的方式合并记录至关重要
分裂,个人信息。尽管已经努力实施健康信息
交流以促进数据集成和交换,将患者记录链接在多个医疗保健中
组织提出了重大的安全性和隐私挑战。同时,作为医疗保健的使用
分析和数据共享增加,必须通过确保对整体数据分析管道的患者信任
要求患者做出“同意决定”。该同意决定涉及共享和访问
患者的健康数据用于治疗,付款和医疗保健操作。结果,我们的医疗保健
如今,分析研究最多需要可以管理患者同意的产品,同时允许
确保多个机构的医疗保健数据的安全和隐私链接。
为了应对这些挑战,我们将开发一个保护隐私的解决方案,可以有效捕获
同意,使用捕获的同意信息收集在某个资源中分发的患者数据
有效的健康组织和2)将不同用户在不同卫生组织中托管的数据链接
同时保护患者隐私并提供问责制。尽管有一些解决方案
医疗保健的同意和保留隐私的记录链接,它们没有集成。另外,存在
技术要么不容易扩展大量数据和/或记录中泄漏敏感信息
链接过程。最后,我们不知道将私人唱片链接与私人链接结合的任何现有工具
可提供问责制的区块链。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fahad Shaon其他文献
Fahad Shaon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Extraction of Vital Signs using a Telehealth Application for Asthma - EViTA-AThe purpose of this grant is to evaluate mobile devices to extract vitals signs to monitor patients with Asthma
使用哮喘远程医疗应用程序提取生命体征 - EViTA-A 这项拨款的目的是评估移动设备提取生命体征以监测哮喘患者
- 批准号:
10699530 - 财政年份:2023
- 资助金额:
$ 25.29万 - 项目类别:
VoiceLove: An App-Based COMmunication Tool Designed to Address DeliriUm and Improve Family ENgagement and PatIent/Family SatisfaCtion in CriticAlly Ill PaTiEnts (COMMUNICATE)
VoiceLove:一种基于应用程序的通信工具,旨在解决危重患者的谵妄问题并提高家庭参与度和患者/家属满意度(沟通)
- 批准号:
10602709 - 财政年份:2023
- 资助金额:
$ 25.29万 - 项目类别:
Privacy-Aware Federated Learning for Breast Cancer Risk Assessment
用于乳腺癌风险评估的隐私意识联合学习
- 批准号:
10742425 - 财政年份:2023
- 资助金额:
$ 25.29万 - 项目类别:
VIPCare: Virtual Predictive Care workflow with integrated surveillance for optimal care protocol selection and management in at-risk prostate cancer patients
VIPCare:虚拟预测护理工作流程,具有综合监测功能,可为高危前列腺癌患者提供最佳护理方案选择和管理
- 批准号:
10758350 - 财政年份:2023
- 资助金额:
$ 25.29万 - 项目类别: