Efficient and privacy-enhancing consent management for health informatics data sharing
针对健康信息学数据共享的高效且增强隐私的同意管理
基本信息
- 批准号:10385293
- 负责人:
- 金额:$ 25.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountabilityAcuteAddressAgeAsthmaAwarenessBig DataCaringChronic DiseaseCloud ComputingCohort StudiesCollectionComplexComputer softwareConsentDataData AnalyticsData LinkagesData Management ResourcesData StoreDatabasesDevelopmentDiabetes MellitusDiagnosisDiseaseEmergency CareEmergency department visitEnsureEnvironmentHealthHealth Care CostsHealth Care ResearchHealth PersonnelHealthcareHospitalsIndividualInformed ConsentInstitutionLinkLocationMachine LearningMedicalMedical ResearchModelingModernizationMyocardial InfarctionNatureOnline SystemsOntologyOutcomePatient-Focused OutcomesPatientsPopulationPrevention strategyPrivacyPrivatizationProcessPublic Health InformaticsRaceRecordsReportingResearchResourcesRunningSecureSecuritySelection BiasSeveritiesSiteSpecific qualifier valueTechniquesTheftTimeTrustVisitasthma exacerbationasthmatic patientbaseblockchaincare outcomescloud basedcohortcostdata exchangedata integrationdata sharingdistributed datadiverse dataencryptionflexibilityhealth care modelhealth care service organizationhealth datahealth disparityhealth managementhealth organizationimprovedindexingnew technologyoperationpatient orientedpatient privacypaymentpredictive modelingpreventprivacy preservationtool
项目摘要
Project Abstract:
To reduce costs and enhance health outcomes, it is of critical importance that patient data are systematically
gathered, cleaned and analyzed, thereby allowing us to build more accurate, timely and reliable models for
diagnosing, managing and treating diseases. One example application domain is asthma control and prediction.
In USA alone, about 40 million people suffered from lifetime asthma (13% of the USA population) and 26 million
people (8%) suffered from current asthma. Developing better predictive models for asthma attacks, can result
in enhancing preventive strategies, improving patient outcomes, and significantly reducing healthcare costs due
to reduced emergency care need. One of the key factors obstructing such models for health care management
is the integration of patient data that are scattered across multiple organizations. This fundamental challenge is
particularly acute for chronic diseases such as asthma where patients often receive care at multiple institutions
within a region. Furthermore, single site studies may provide inaccurate picture due to data inaccuracies. For
example, due to certain selection biases, number of patients from certain race group maybe underrepresented
in one location. In addition, severity information of diseases may not be complete if all the emergency care visits
are not recorded. Without proper record linkage and data duplication, many of the disease specific conditions
may be over-represented. For instance, it is reported that after cross-institution deduplication, number of records
related to diabetes reduced 24.0%, asthma reduced 28.0%, and myocardial infarction reduced 10.9%.
Therefore, it is of paramount importance to merge records in a manner that mitigates duplication, as well as
fragmentation, of an individual’s information. Although there have been efforts to implement health information
exchanges to facilitate data integration and exchange, linking patient records across multiple health care
organizations create significant security and privacy challenges. At the same time, as the usage of healthcare
analytics and the data sharing increases, patient trust in the overall data analytics pipeline must be ensured by
asking patients to make a “consent decision”. This consent decision concerns the sharing and accessing of the
patient’s health data for treatment, payment, and health care operations purposes. As a result, our healthcare
analytics research nowadays is at utmost need of a product that can manage patient consent while allowing
secure and privacy-preserving linkage of health care data across multiple institutions.
To address these challenges, we will develop a privacy-preserving solution that can 1) efficiently capture
consent, use the captured consent information to gather patient data distributed across resources within a certain
health organization efficiently and 2) link the data hosted by different users across disparate health organizations
while protecting patient privacy and providing accountability. Although there exist some solutions for managing
healthcare consent and privacy-preserving record linkage, they are not integrated. In addition, existing
techniques either do not easily scale for large amounts of data and/or leak sensitive information during record
linkage process. Finally, we are not aware of any existing tool that combines private-record linkage with private
blockchains for providing accountability.
项目摘要:
为了降低成本和提高健康结果,系统地收集患者数据至关重要。
收集,清理和分析,从而使我们能够建立更准确,及时和可靠的模型,
诊断、管理和治疗疾病。一个示例应用领域是哮喘控制和预测。
仅在美国,约有4000万人患有终生哮喘(占美国人口的13%),2600万人患有哮喘。
8%的人目前患有哮喘。开发更好的哮喘发作预测模型,
在加强预防策略,改善病人的结果,并显着降低医疗成本,
减少紧急护理需求。阻碍这种卫生保健管理模式的关键因素之一是
是分散在多个组织中的患者数据的集成。这一根本性挑战是
对于哮喘等慢性病尤其严重,患者经常在多个机构接受护理
在一个区域内。此外,由于数据不准确,单中心研究可能提供不准确的图片。为
例如,由于某些选择偏倚,来自某些种族组的患者数量可能代表性不足
在一个地方。此外,如果所有的紧急护理访问都是在
没有记录。如果没有适当的记录链接和数据复制,许多疾病的具体条件,
可能会被夸大。例如,据报告,在跨机构重复数据消除后,
与糖尿病相关的减少24.0%,哮喘减少28.0%,心肌梗死减少10.9%。
因此,以减少重复的方式合并记录以及
个人信息的碎片化。尽管已经做出努力,
交换,以促进数据集成和交换,将多个医疗保健系统中的患者记录联系起来
组织会带来重大的安全和隐私挑战。同时,随着医疗保健的使用,
随着分析和数据共享的增加,必须通过以下措施确保患者对整个数据分析管道的信任
要求患者做出“同意决定”。该同意决定涉及共享和访问
患者的健康数据,用于治疗、支付和医疗保健操作目的。因此,我们的医疗保健
如今的分析研究迫切需要一种产品,可以管理患者的同意,同时允许
在多个机构之间建立安全和隐私保护的医疗保健数据链接。
为了应对这些挑战,我们将开发一种隐私保护解决方案,它可以1)有效地捕获
同意,使用捕获的同意信息来收集在一定范围内跨资源分布的患者数据。
2)将不同用户托管的数据跨不同的卫生组织链接起来
同时保护患者隐私并提供问责制。尽管存在一些管理的解决方案,
医疗保健同意和隐私保护记录联系,它们没有整合。此外,现有
这些技术或者不容易针对大量数据进行缩放和/或在记录期间泄漏敏感信息
链接过程最后,我们不知道有任何现有的工具将私有记录链接与私有
区块链提供问责制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fahad Shaon其他文献
Fahad Shaon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 25.29万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 25.29万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 25.29万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 25.29万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 25.29万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 25.29万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 25.29万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 25.29万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 25.29万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 25.29万 - 项目类别:
Standard Grant