Calcium coding mechanisms in plant cell growth and immunity

植物细胞生长和免疫中的钙编码机制

基本信息

  • 批准号:
    10385315
  • 负责人:
  • 金额:
    $ 8.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Calcium (Ca) is a second messenger in all eukaryotes. Defects in Ca signaling cause numerous human diseases including Alzheimer’s disease, heart failure, metabolic diseases, immune disorders, neurodegenerative diseases, and cancer. Despite the importance and broad medical implications, Ca signaling mechanisms remain unclear. The challenging question concerns how Ca encodes specific information coming from different primary signals and translate them into distinct cellular responses. Coding and decoding the specificity of Ca signals remains a long-standing puzzle in the signal transduction field. The PI’s laboratory studies Ca coding and decoding mechanisms using Arabidopsis as a model system and has made breakthroughs in dissecting Ca- coding mechanisms, setting the stage for this application. The proposed studies seek to understand Ca-coding mechanisms in the contexts of pollen tube growth and innate immunity both of which involve cyclic nucleotide- gated channels (CNGCs) in Arabidopsis. The Specific Aim 1 will address the relationship between CNGC-based Ca oscillations and peptide signaling during pollen tube growth. PI’s lab identified two CNGC-type proteins and calmodulin (CaM) forming a Ca “oscillator” in pollen tube growth that also requires autocrine peptide hormones produced by pollen tube. The overarching hypothesis is that peptides bind to their receptors that in turn modulate Ca-oscillator channels. This will be tested through genetic analysis combined with single cell Ca imaging. The Specific Aim 2 will identify Ca transporters that work together with CNGCs in immunity signaling. The importance of Ca signaling has long been recognized in innate immunity for both animal and plant cells. PI’s lab identified a CNGC-type channel that generates cytoplasmic Ca spike in response to bacterial pathogens. Using genetic analysis in Arabidopsis and yeast genetic complementation models, Aim 2 will identify the transporters responsible for removing the Ca signal and study how they coordinate with CNGC-type channels to precisely shape the spatial and temporal dynamics of Ca codes. Specific Aim 3 seeks to understand the mechanisms for activation and inactivation of plant CNGCs. The CNGC-type channels function in both pollen tube and immunity models, but they consist of different subunits and their regulations by CaM are different too. Further, while animal CNGCs are activated by the cyclic nucleotides (cAMP/cGMP), the plant CNGCs in pollen tube and immunity models are insensitive to these nucleotides. The hypothesis is that plant CNGCs are regulated differently from animal counterparts and CaM-based regulation depends on subunit composition of the CNGCs. This hypothesis will be tested in Aim 3 using biochemical and electrophysiological approaches in both pollen tube and immunity model. Arabidopsis is an ideal model to address basic Ca signaling mechanisms, as it provides a plethora of genetic tools and an array of whole-organism and single-cell Ca signaling phenotypes in the genetic mutants. Completion of these aims will reveal new Ca coding mechanisms, contributing to the conceptual framework of Ca signaling highly relevant to human health.
钙(Ca)是所有真核生物的第二信使。钙信号的缺陷导致许多人类疾病

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sheng Luan其他文献

Sheng Luan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sheng Luan', 18)}}的其他基金

Calcium coding mechanisms in plant cell growth and immunity
植物细胞生长和免疫中的钙编码机制
  • 批准号:
    10430218
  • 财政年份:
    2020
  • 资助金额:
    $ 8.01万
  • 项目类别:
Calcium coding mechanisms in plant cell growth and immunity
植物细胞生长和免疫中的钙编码机制
  • 批准号:
    10643897
  • 财政年份:
    2020
  • 资助金额:
    $ 8.01万
  • 项目类别:
Calcium coding mechanisms in plant cell growth and immunity
植物细胞生长和免疫中的钙编码机制
  • 批准号:
    10581257
  • 财政年份:
    2020
  • 资助金额:
    $ 8.01万
  • 项目类别:
Calcium coding mechanisms in plant cell growth and immunity
植物细胞生长和免疫中的钙编码机制
  • 批准号:
    10026845
  • 财政年份:
    2020
  • 资助金额:
    $ 8.01万
  • 项目类别:
Calcium coding mechanisms in plant cell growth and immunity
植物细胞生长和免疫中的钙编码机制
  • 批准号:
    10242190
  • 财政年份:
    2020
  • 资助金额:
    $ 8.01万
  • 项目类别:
2019 Organellar Channels and Transporters Gordon Research Conference and Gordon Research Seminar
2019细胞器通道与转运蛋白戈登研究会议暨戈登研究研讨会
  • 批准号:
    9760256
  • 财政年份:
    2019
  • 资助金额:
    $ 8.01万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了