Dchs1 and the Septin Cytoskeleton: a Molecular and Developmental Etiology Underlying Mitral Valve Prolapse
Dchs1 和 Septin 细胞骨架:二尖瓣脱垂的分子和发育病因学
基本信息
- 批准号:10383138
- 负责人:
- 金额:$ 1.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2021-07-29
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalActinsAdultAffectArrhythmiaBackBiological AssayBiological ModelsBiomedical EngineeringCadherinsCardiacCardiac Surgery proceduresCardiovascular DiseasesCardiovascular systemCell AdhesionCell NucleusCellsCollagenComplexCytoskeletonDNADNA Sequence AlterationDefectDevelopmentDiseaseEnvironmentEtiologyExtracellular MatrixF-ActinFamilyFibrinFibroblastsFoundationsFutureGenerationsGenesGeneticGenetic EpistasisGeometryGoalsHealthHeartHeart Valve DiseasesHeart failureHeterozygoteHistologicHumanHuman GeneticsIn VitroInterventionLeadLinkMeasurementMeasuresMembraneMethodsMicrofilamentsMitral ValveMitral Valve ProlapseModelingMolecularMorbidity - disease rateMorphogenesisMusMutationNuclearOperative Surgical ProceduresPathogenesisPathway interactionsPatientsPeptidesPharmacologyPhasePhenocopyPopulationPregnancyProcessProductionRoleSecondary toSeedsSeriesShapesStructureSystemTestingTherapeuticThinnessTissuesTransmission Electron MicroscopyWestern Worldbaseclinically relevantexperimental studyfetalimmunocytochemistryin vivoinsightinterstitial cellmortalitymouse modelnovelnovel therapeuticspolymerizationpostnatalprotein complexsudden cardiac deaththree-dimensional modelingtreatment strategyyeast two hybrid system
项目摘要
ABSTRACT
Mitral valve prolapse (MVP) is one of the most common forms of cardiac valve disease and affects ~2-3% of the
human population. There are no effective nonsurgical treatments for MVP and therapeutic efforts have been
hindered by an incomplete understanding of its fundamental causes. However, we now have compelling genetic
and functional evidence that significantly advances our understanding of MVP pathogenesis. Our group was the
first to identify a genetic cause for MVP through identification of mutations in the atypical cadherin gene, DCHS1,
in multiple families with non-syndromic MVP and have traced the origin of disease back to defects in fetal valve
morphogenesis. The distinct functional and molecular consequences of DCHS1 deficiency are not currently
known, but recent two-hybrid studies have revealed a novel protein complex between DCHS1, Lix-1 like (LIX1L),
and Septin-9 (SEPT9) (DLS). Preliminary evidence supports a mechanism in which this complex links DCHS1-
based cell adhesions to the actin cytoskeleton through its interactions with cytoplasmic LIX1L and SEPT9. Thus,
we hypothesize that valve remodeling occurs through a DCHS1-LIX1L-SEPT9-actin mechanism, which may
provide a molecular and cellular origin for MVP. This hypothesis will be tested by defining mechanisms by which
the DLS complex regulates actin organization (Aim 1), directs proper valve remodeling ex vivo (Aim 2) and
genetically interacts within the same pathway to regulate proper valve geometry and ECM organization (Aim 3).
Aim 1 of this proposal involves an in vitro approach to define the effect of DLS on actin filament organization by
quantifying septin-actin network formation and the resulting intracellular tension in genetically modified mouse
cardiac fibroblasts. The functional consequences of DLS interactions with the actin cytoskeleton and its role in
valve remodeling will be measured through application of a novel ex vivo approach in Aim 2. Here, valve
interstitial cells (VICs) will be isolated from control and global Dchs1 and/or LIX1L heterozygote mouse hearts
and seeded into a 3D bioengineered valve construct that recapitulates the native valve environment. Readouts
including cell alignment, nuclear shape, actin organization, ECM production and formation, and force generation
will be measured and allow for quantification of the remodeling processes that are crucial for valve
morphogenesis. In vivo epistasis experiments performed in Aim 3 will add credence to each approach and will
define the genetic interaction between Dchs1 and Lix1L and their role in our proposed pathway. These studies
are significant since they are based on mutations identified in MVP patients and will define the molecular and
cellular origins of one of the most common cardiovascular diseases in the world.
摘要
二尖瓣脱垂(MVP)是心脏瓣膜疾病最常见的形式之一,影响约2-3%的患者。
人口。MVP没有有效的非手术治疗方法,
由于对其根本原因的不完全理解而受到阻碍。然而,我们现在有令人信服的基因,
和功能性证据,显著推进了我们对MVP发病机制的理解。我们组是
首先通过鉴定非典型钙粘蛋白基因DCHS 1的突变来鉴定MVP的遗传原因,
在多个非综合征型MVP家族中,
形态发生DCHS 1缺陷的不同功能和分子后果目前还不清楚。
已知的,但最近的双杂交研究已经揭示了DCHS 1,Lix-1样(LIX 1 L),
和Septin-9(SEPT 9)(DLS)。初步证据支持这种复合物将DCHS 1-
通过与细胞质LIX 1 L和SEPT 9的相互作用,基于细胞粘附到肌动蛋白细胞骨架。因此,在本发明中,
我们假设瓣膜重塑是通过DCHS 1-LIX 1 L-SEPT 9-actin机制发生的,
为MVP提供分子和细胞来源。这一假设将通过定义机制来检验,
DLS复合物调节肌动蛋白组织(Aim 1),指导离体适当的瓣膜重塑(Aim 2),
在相同的通路内遗传相互作用,以调节适当的瓣膜几何形状和ECM组织(目的3)。
本提案的目的1涉及一种体外方法,通过以下方法来确定DLS对肌动蛋白丝组织的影响:
在遗传修饰的小鼠中定量septin-actin网络形成和产生的细胞内张力
心脏成纤维细胞DLS与肌动蛋白细胞骨架相互作用的功能后果及其在
在Aim 2中,将通过应用新的离体方法测量瓣膜重塑。这里,阀门
将从对照和整体Dchs 1和/或LIX 1 L杂合子小鼠心脏中分离间质细胞(VIC)
并接种到重现天然瓣膜环境的3D生物工程瓣膜构造中。读数
包括细胞排列、核形状、肌动蛋白组织、ECM产生和形成以及力的产生
将被测量,并允许量化对瓣膜至关重要的重塑过程
形态发生在目标3中进行的体内上位性实验将增加每种方法的可信度,
定义Dchs 1和Lix 1 L之间的遗传相互作用及其在我们提出的途径中的作用。这些研究
是重要的,因为它们是基于MVP患者中鉴定的突变,
世界上最常见的心血管疾病之一的细胞起源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kelsey Schuyler Moore其他文献
Kelsey Schuyler Moore的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 1.33万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 1.33万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 1.33万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 1.33万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 1.33万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 1.33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 1.33万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 1.33万 - 项目类别: