Real Time NEURON Simulation for Experimental Applications
实验应用的实时神经元模拟
基本信息
- 批准号:10384810
- 负责人:
- 金额:$ 25.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAmplifiersBehaviorBindingBiological AssayBiomedical TechnologyCellsClosure by clampCommunicationComplexComputer ModelsComputer softwareComputersCouplingDataDefectDevelopmentDiagnosisDiagnostic testsDiseaseDisease modelDrug IndustryElectrical EngineeringElectrophysiology (science)EngineeringEnvironmentExplosionGap JunctionsGenetic ModelsGoalsInnovation CorpsInterneuronsIon ChannelKineticsLinkMedicineMembraneMental disordersMethodologyModelingMolecular MedicineMonitorMorphologic artifactsMutationNamesNervous system structureNeuronsNeurosciencesOutputPharmaceutical PreparationsPlayProcessPropertyQuality ControlReportingResearchResearch PersonnelResistanceRunningScienceSeizuresSoftware EngineeringSourceStandardizationStimulusSynaptic TransmissionSystemTechnical ExpertiseTestingTimeTraininganalogbasecommercial applicationcomputer generateddesigndrug discoveryexperimental studyfictional worksgain of functioninterestmathematical modelnervous system disorderoperationparallel computerpatch clamppreventresearch and developmentsimulationsimulation softwareskillstoolvoltage clamp
项目摘要
The goal of this proposal is to combine the power of the NEURON mathematical modeling software with the
Cybercyte “plug and play” dynamic clamp system. Our product will enable all neuronal electrophysiologists to be
able to perform sophisticated NEURON model based dynamic clamp experiments, without any requirement for
programming, engineering, or mathematical modeling skills. Our product is an integrated package of hardware
and software specifically for neuroscience applications, focusing on the specific stability and reliability needed
for routine neuronal electrophysiology and the large array of ion channels found in the nervous system. The four
aims of this project are:
Aim 1. Implement and Test Electronic Expression Mode. In this aim, the patch clamp amplifier is used in
current clamp mode to run cell-based action potentials from live cells, augmented with computer models of
specific channels. Artificial ion channels generated by computer models are used to inject an equivalent current
to mimic the effects of channel mutations, gain of function, state dependent drug binding etc., to reveal their
mechanisms of action on the excitability of real neurons. This can be thought of as an inexpensive “short cut” to
the painstaking process of generating genetic models of ion channels and other electrophysiological models.
Aim 2. Implement and Test Synthetic Cell Mode. In synthetic cell mode, all of the component currents, except
for the one of interest, are modelled, along with membrane action potentials. The current of interest is then
generated in, for example, an HEK cell expressing the channel of interest and controlled by a voltage-clamp
amplifier. The command input to the voltage clamp is the simulated action potential from the dynamic clamp
system with the synthetic cell. For example, real drugs can be added to the cloned channel of interest or the
consequences of a real kinetic mutation can be analyzed.
Aim 3. Implement and Demonstrate Cell Coupling Mode. Cell coupling mode was arguably the first form of
dynamic clamp invented. Originally it used analog circuitry to mimic gap junctional resistance between cells.
With NEURON, we can implement complex forms of cell to cell coupling, including synaptic transmission and
interneurons.
Aim 4. Implement and Test Diagnostics and Experimental Safeguards. A major limitation of dynamic clamp
applications in research & development, particularly in commercial applications, is the difficulty in maintaining
quality control. This aim helps automate the process of quality control to make the system accessible to non-
specialist users.
Completion of these aims will result in a commercial advanced dynamic clamp system with an interface to
NEURON, which is powerful, reliable, but plug and play to install, and simple to use.
本提案的目标是将神经元数学建模软件的强大功能与
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark W Nowak其他文献
Mark W Nowak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark W Nowak', 18)}}的其他基金
Oral delivery of peptides targeting intracellular protein-protein interactions
口服递送针对细胞内蛋白质-蛋白质相互作用的肽
- 批准号:
8251999 - 财政年份:2012
- 资助金额:
$ 25.66万 - 项目类别:
Using a cyclotide-based molecular scaffold to select specific protein-protein inh
使用基于环肽的分子支架来选择特定的蛋白质-蛋白质inh
- 批准号:
7996667 - 财政年份:2010
- 资助金额:
$ 25.66万 - 项目类别:
Novel drug discovery assay to identify inhibitors of NFkB signaling
鉴定 NFkB 信号传导抑制剂的新药发现试验
- 批准号:
7669696 - 财政年份:2009
- 资助金额:
$ 25.66万 - 项目类别:
High Throughput Screening Technology for Allosteric Kinase Inhibitors
变构激酶抑制剂高通量筛选技术
- 批准号:
7608761 - 财政年份:2008
- 资助金额:
$ 25.66万 - 项目类别:
Novel assay to identify non-ATP competitive protein kinase inhibitors
鉴定非 ATP 竞争性蛋白激酶抑制剂的新方法
- 批准号:
7271467 - 财政年份:2007
- 资助金额:
$ 25.66万 - 项目类别:
相似海外基金
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
- 批准号:
2335504 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Cooperative Agreement
Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
- 批准号:
EP/X031918/1 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Fellowship
Josephson Parametric Amplifiers using CVD graphene junctions
使用 CVD 石墨烯结的约瑟夫森参量放大器
- 批准号:
EP/Y003152/1 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Research Grant
Semiconductor-based Terahertz Traveling Wave Amplifiers for Monolithic Integration
用于单片集成的半导体太赫兹行波放大器
- 批准号:
2329940 - 财政年份:2023
- 资助金额:
$ 25.66万 - 项目类别:
Standard Grant
OPTIME-PA: Optimal MMIC Design of E-Band Power Amplifiers for Satcom using Dedicated Measurements and Non-Linear Modelling
OPTIME-PA:使用专用测量和非线性建模的卫星通信 E 频段功率放大器的最佳 MMIC 设计
- 批准号:
10075892 - 财政年份:2023
- 资助金额:
$ 25.66万 - 项目类别:
Collaborative R&D
Optical Glass Amplifiers for High Capacity Networks
用于高容量网络的光学玻璃放大器
- 批准号:
538379-2018 - 财政年份:2022
- 资助金额:
$ 25.66万 - 项目类别:
Collaborative Research and Development Grants
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10681326 - 财政年份:2022
- 资助金额:
$ 25.66万 - 项目类别:
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10621402 - 财政年份:2022
- 资助金额:
$ 25.66万 - 项目类别:
Broadband Digital Doherty Amplifiers for Sub-6 GHz 5G wireless Applications
适用于 6 GHz 以下 5G 无线应用的宽带数字 Doherty 放大器
- 批准号:
573452-2022 - 财政年份:2022
- 资助金额:
$ 25.66万 - 项目类别:
Alliance Grants
TALENT – Tapered AmpLifiErs for quaNtum Technologies
人才 — 量子技术的锥形放大器
- 批准号:
10032436 - 财政年份:2022
- 资助金额:
$ 25.66万 - 项目类别:
Collaborative R&D