The Ionotropic Cannabinoid Receptor TRPV1
离子型大麻素受体 TRPV1
基本信息
- 批准号:10385705
- 负责人:
- 金额:$ 0.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2022-08-09
- 项目状态:已结题
- 来源:
- 关键词:Absence of pain sensationAction PotentialsAffectAgonistAllosteric SiteAlzheimer&aposs DiseaseAmericanAnalgesicsApplications GrantsAwardBindingBinding SitesBiological AssayBrainCNR1 geneCNR2 geneCalciumCannabinoidsCannabisCannabis sativa plantCellsCoinCollaborationsComplexComputational TechniqueCryoelectron MicroscopyDataDetectionDevelopmentDockingDrug DesignEndocannabinoidsEnvironmentEpilepsyEtiologyEventFellowshipG-Protein-Coupled ReceptorsGoalsHumanHydration statusImageInvestigationIon ChannelIonsLeadLearningLigand BindingLigandsLipid BilayersLocationMalignant NeoplasmsMemoryModelingMolecular ConformationMutagenesisMutationNociceptionOpioidPainPain managementPathway interactionsPeripheral Nervous SystemPersonsPlantsPostdoctoral FellowProcessPropertyPublishingRattusRefractoryResearch PersonnelRiskScientistSeriesStimulusStructureSymptomsSyndromeSystemTRP channelTRPV channelTRPV1 geneTestingTherapeuticTimeTrainingUniversitiesVanilloidWorkanandamideantagonistappetite losscannabinoid receptorcapsaicin receptorchronic painchronic pain managementchronic painful conditioncombatcomputer studiesconformerdesensitizationexperienceexperimental studyfield studyinterestknowledge basemolecular dynamicspain perceptionpain reliefpain sensationpainful neuropathyprogramsrational designreceptorside effectsimulationsupercomputerthree-dimensional modeling
项目摘要
PROJECT SUMMARY
Chronic pain encompasses a wide range of symptoms and pathways, making the condition notoriously difficult
to treat. While opioid treatments can be effective, the unwanted side effects and risk of abuse warrant the
investigation of safer treatment options. Cannabis sativa has been utilized for millennia for its medicinal
properties and has been studied for its therapeutic potential in the treatment of epilepsy, Alzheimer’s disease,
appetite loss, and pain. While most people think of the canonical CB1/CB2 receptors when it comes to
cannabinoids, other GPCRs and TRP channels can be modulated by a subset of these ligands. In fact, this
project focuses on one of the TRP channels that has been coined an “ionotropic cannabinoid receptor,” TRPV1.
TRPV1 (also known as the capsaicin receptor) is a homotetrameric, polymodal channel, and is located in the
peripheral nervous system and has been implicated in the perception of pain. This project seeks to understand
how and where various cannabinoid ligands bind to and activate TRPV1, in order to aid in rational drug design.
The mechanism by which TRPV1 relieves pain is paradoxical; upon activation of TRPV1, ions (preferentially
calcium) enter the cell and cause a series of calcium-dependent processes. This generates an action potential
which is then propagated to the brain, resulting in the sensation of pain. Shortly after activation, TRPV1 is
desensitized, rendering it refractory to any further stimulation, resulting in the paradoxical analgesic effect.
Because of this, targeting TRPV1, an ion channel that contributes to the detection of painful stimuli, may be an
effective approach in treating chronic pain syndromes.
By utilizing computational techniques such as modeling and molecular dynamics simulations, interactions of
cannabinoid ligands can be observed with TRPV1, which provide atomic level descriptions that are unavailable
to experimental studies. Preliminary data suggests that anandamide may bind to TRPV1 in an allosteric site
apart from the location of vanilloid binding. To further investigate this result, a grant application to use the
supercomputer ANTON2 was written and awarded, and ~10μs of additional data was gathered thus far. Since
this work is part of a combined computational/experimental effort that centers on identifying relevant residues for
binding and modes of TRPV1 activation/inactivation by cannabinoid ligands, the results from these simulations
will be tested via mutagenesis and functional experimental studies by working in the lab of Dr. Mary Abood at
Temple University and collaborating with Dr. Eugen Brailoiu for live cell calcium imaging.
项目摘要
慢性疼痛包括广泛的症状和途径,使条件众所周知的困难
虽然阿片类药物治疗可能是有效的,但不必要的副作用和滥用的风险保证了
研究更安全的治疗方案。数千年来,大麻一直被用于其药用
性质,并已研究其在治疗癫痫,阿尔茨海默病,
食欲减退和疼痛。虽然大多数人在谈到经典CB 1/CB 2受体时都会想到
大麻素、其他GPCR和TRP通道可以通过这些配体的子集来调节。其实这
该项目的重点是TRP通道之一,被称为“离子型大麻素受体”TRPV 1。
TRPV 1(也称为辣椒素受体)是一种同源四聚体,多模式通道,位于
外周神经系统,并已牵连在疼痛的感知。本项目旨在了解
各种大麻素配体如何以及在何处结合并激活TRPV 1,以帮助合理的药物设计。
TRPV 1缓解疼痛的机制是自相矛盾的;在TRPV 1激活后,离子(优先
钙)进入细胞并引起一系列钙依赖性过程。这会产生动作电位
然后传播到大脑,产生疼痛感。激活后不久,TRPV 1
脱敏,使其对任何进一步的刺激都不敏感,导致矛盾的镇痛作用。
正因为如此,靶向TRPV 1,一种有助于检测疼痛刺激的离子通道,可能是一种治疗疼痛的方法。
治疗慢性疼痛综合征的有效方法。
通过利用诸如建模和分子动力学模拟的计算技术,
大麻素配体可以用TRPV 1观察到,它提供了原子水平的描述,而这些描述是不可用的
到实验研究。初步数据表明,大麻素可能在变构位点与TRPV 1结合
除了香草素结合的位置。为了进一步研究这一结果,一项使用
超级计算机ANTON 2被编写并授予,迄今为止收集了约10μs的额外数据。以来
这项工作是结合计算/实验工作的一部分,其中心是鉴定相关残基,
结合和TRPV 1激活/大麻素配体失活的模式,这些模拟的结果
将通过在玛丽德博士的实验室工作的诱变和功能实验研究进行测试,
坦普尔大学和合作博士Eugen Brailoiu活细胞钙成像。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Targeting CB2 and TRPV1: Computational Approaches for the Identification of Dual Modulators.
- DOI:10.3389/fmolb.2022.841190
- 发表时间:2022
- 期刊:
- 影响因子:5
- 作者:Morales P;Muller C;Jagerovic N;Reggio PH
- 通讯作者:Reggio PH
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chanté Muller其他文献
Chanté Muller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 0.95万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 0.95万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 0.95万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 0.95万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 0.95万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 0.95万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 0.95万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 0.95万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 0.95万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 0.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




